
具有特殊伸缩矩阵的Parseval框架小波集的结构
Structure of the Set of Parseval Frame Wavelets with Special Dilation Matrices
揭示具有特殊伸缩矩阵的Parseval框架小波集的丰富结构.借助于平移不变空间和维数函数, 研究了具有特殊伸缩矩阵M的Parseval框架小波(M-PFW)、半正交M-PFW和MRAM-PFW的各种性质, 探讨了M-PFW集合的各种子类,给出了这些子类的构造性算例.
The purpose of this paper is to find out the deep and rich structure of the set of Parseval frame wavelets with special dilation matrices (M-PFW). We study the all kinds of properties of M-PFW, semi-orthogonal M-PFW and MRA M-PFW based on shift-invariant space and the dimension function. We investigate various subclass of the set of M-PFWs. Several constructive examples illustrating the various possibilities are given.
特殊伸缩矩阵 / Parseval框架小波 / 平移不变空间 / 维数函数 {{custom_keyword}} /
special dilation matrices / Parseval frame wavelets / shift-invariant space / dimension function {{custom_keyword}} /
[1] Baki? D., Semi-orthogonal Parseval frame wavelets and generalized multiresolution analyses, Appl. Comput. Harmon. Anal., 2006, 21: 281-304.
[2] Baki? D., Krishtal D., Wilson E., Parseval frame wavelets with En (2)-dilations, Appl. Comput. Harmon. Anal., 2005, 19(2): 386-431.
[3] Benedetto J., Treiber O., Wavelet Frames: Multiresolution Analysis and Extension Principles, in Wavelet Transform and Time-Frequency Signal Analysis, L. Debnath. Ed., Applied and Numerical Haimonic Analysis, Birkhäuser, Boston, USA, 2001.
[4] Benedetto J., Li S., The theory of multiresolution analysis frame and application to filter banks, Appl. Comput. Harmon. Anal., 1998, 5(4): 389-427.
[5] Bownik M., A characterization of affine dual frame in L2(Rn), Appl. Comput. Harmon. Anal., 2000, 8(2): 282-309.
[6] Bownik M., The structure of shift-invariant subspace of L2(Rn), J Funct. Anal., 2000, 177(2): 282-309.
[7] Bownik M., Rzeszotnik Z., Speegle D., A characterization of dimension of wavelets, Appl. Comput. Harmon. Anal., 2001, 10(1): 61-70.
[8] Bownik M., Rzeszotnik Z., On the existence of multiresolution analysis for framelets, Math. Ann., 2005, 332: 705-720.
[9] Christensen O., An Introduction to Frames and Reisz Bases, Birkhäuser, Boston, USA, 2003.
[10] Dai X., Larson D., Speegle D., Wavelet sets in Rn, J. Fourier Anal. Appl., 1997, 3(2): 451-456.
[11] Duffin R., Schaffer A., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72(2): 341-366.
[12] Ehler M., On multivariate compactly supported bi-Frames, J. Fourier Anal. Appl., 2007, 13(5): 511-532.
[13] Ehler M., Han B., Wavelet bi-frames with few generator from multivariate refinable function, Appl. Comput. Harmon. Anal., 2008, 25: 407-414.
[14] Han B., Mo Q., Multivariate frame from refinable function vector, Adv. Comp. Math., 2003, 18(2): 211-245.
[15] Henández E., Weiss G., A First Course on Wavelet, CRC Press, Boca Raton, Fla, USA, 1996.
[16] Huang Y., Zhu F., Characterizations of tight frame wavelets with special dilation matrices, Math. Probl. Eng., 2010, paper ID: 128294, 24 pages.
[17] Kim O., lim J., On frame wavelets associated with frame multiresolution analysis, Appl. Comput. Harmon. Anal., 2001, 10(1): 71-92.
[18] LaiM., stockler J., Construction of multivariate compactly supported tight wavelets, Appl. Comput. Harmon. Anal., 2006, 21(3): 324-348.
[19] Lai M., stockler J., Construction of multivariate compactly supported tight wavelets frames, Appl. Comput. Harmon. Anal., 2006, 21(3): 324-348.
[20] Li Y., Zhou F., The characterization of a class of multivariate MRA and semi-orthogonal parseval frames wavelets, Appl. Math. Comput., 2011, 217: 9151-9164.
[21] Paluszyński M., Šiki? H., Weiss G., et al., Generalized low pass filters and MRA frame wavelets, J. Geom. Anal., 2001, 11(2): 311-342.
[22] Paluszyński M., Šiki? H., Weiss G., et al., Tight frame wavelets,their dimension functions, MRA tight frame wavelets and connectivity properties, Adv. Comput. Math., 2003, 18(3): 297-327
[23] Ron A., Shen Z., The wavelet dimension function is the trace function of shift-invariant system, Proc. Amer. Math. Soc., 2003, 131(5): 1385-1398.
[24] Šiki? H., Speegle D., Weiss G., Structure of the Set of Dyadic PFWs, Frames and Operator Theory in Analysis and Signal Processing. Contemporary Mathematics, 451, Amercian Mathematics society Providence, RI, 2008: 263-291.
[25] Speegle D., The s-elementary wavelets are path connected, Proc. Amer. Math. Soc., 1999, 127(1): 223-233.
[26] Wu G., Yang X., Liu Z., MRA Parseval frame wavelets and their multiplies in L2(Rn), Math. Probl. Eng., 2009, paper ID: 492585, 17 pages.
[27] Zhou F., Li Y., Multivariate FMRAs and FMRA frame wavelet for reducing subspaces of L2(Rd), Kyoto J. Math., 2010, 50: 83-99.
国家自然科学基金资助项目(10961001, 61261043);宁夏自然科学基金重点资助项目(NZ13084)
/
〈 |
|
〉 |