向量值空间中的几何酉元

黄旭剑, 谭冬妮

数学学报 ›› 2015, Vol. 58 ›› Issue (6) : 1001-1008.

PDF(443 KB)
PDF(443 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (6) : 1001-1008. DOI: 10.12386/A2015sxxb0099
论文

向量值空间中的几何酉元

    黄旭剑, 谭冬妮
作者信息 +

Geometric Unitaries in Vector-Valued Function Spaces

    Xu Jian HUANG, Dong Ni TAN
Author information +
文章历史 +

摘要

研究向量值空间中的几何酉元.通过数值指标理论刻画向量值空间C(Ω, X), L(μ, X) 和 L(l1(Γ), X)中几何酉元的特征, 其中X是Banach空间, Ω 是紧Hausdorff空间,μσ有限测度以及Γ 是非空指标集.同时,描述了Banach空间的内射张量积和投射张量积中几何酉元的特征.

Abstract

We study the geometric unitaries in vector-valued function spaces. By using numerical index theory, we characterize the geometric unitaries in the spaces C(Ω, X) on a compact Hausdorff space Ω, L(μ, X) for every σ-finite measure μ and L(l1(Γ),X)for every nonempty index set Γ. We also describe the geometric unitaries in the injective and projective tensor product of Banach spaces.

关键词

几何酉元 / 数值指标 / 数值域空间

Key words

geometric unitary / numerical index / numerical range space

引用本文

导出引用
黄旭剑, 谭冬妮. 向量值空间中的几何酉元. 数学学报, 2015, 58(6): 1001-1008 https://doi.org/10.12386/A2015sxxb0099
Xu Jian HUANG, Dong Ni TAN. Geometric Unitaries in Vector-Valued Function Spaces. Acta Mathematica Sinica, Chinese Series, 2015, 58(6): 1001-1008 https://doi.org/10.12386/A2015sxxb0099

参考文献

[1] Akemann C., Weaver N., Geometric characterizations of some classes of operators in C*-algebras and von Neumann algebras, Proc. Amer. Math. Soc., 2002, 130: 3033–3037.

[2] Aparicio C., Ocaña F. G., Payá R., et al., A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasg. Math. J., 1986, 28: 121–137.

[3] Bandyopadhyay P., Jarosz K., Rao T. S. S. R. K., Unitaries in Banach spaces, Illinois J. Math., 2004, 48: 339–351.

[4] Becerra Guerrero J., Cowell S., Rodríguez-Palacios A., et al., Unitary Banach algebras, Studia Math., 2004, 162: 25–51.

[5] Becerra Guerrero J., Rodríguez-Palacios A., Convex-transitive Banach spaces, big points, and the duality mapping, Q. J. Math., 2002, 53: 257–264.

[6] Becerra Guerrero J., Rodríguez-Palacios A., Wood G., Banach spaces whose algebras of operators are unitary: a holomorphic approach, Bull. London. Math. Soc., 2003, 35: 218–224.

[7] Bohnenblust H. F., Karlin, S, Geometrical properties of the unit sphere of Banach algebras, Ann. Math., 1955, 62: 217–229.

[8] Brookso J. K., Lewis P. W., Linear operators and vector measures, Trans. Amer. Math. Soc., 1974, 291: 139–162.

[9] Diestel J., Uhl J. J., Vector measures, Math. Surveys, No. 15, Amer. Math. Soc, Providence, R. I., 1977.

[10] Huang X. J., Complete geometric unitaries in operator spaces, Illinois. J. Math., 2012, 56(2): 633–645.

[11] Huang X. J., Ng C. K., An abstract characterization of unital operator spaces, J. Oper. Theory., 2012, 67(1): 289–298.

[12] Kadets V., Martín M., Payá R., Recent progress and open questions on the numerical index of Banach spaces, R. Acad. Cien. SerieA. Mat., 2006, 2000: 155–182.

[13] Leung C. W., Ng C. K., Wong N. C., Geometric unitaries in JB-algebras, J. Math. Anal. Appl., 2009, 360: 491–494.

[14] Martín M., Villena A. R., Numerical index and Daugavet property for L(μ,X), Proc. Edinburgh Math. Soc., 2003, 46: 415–420.

[15] Martinez J., Mena J. F., Payá R., et al., An approach to numerical ranges without Banach algebra theory, Illinois J. Math., 1985, 29: 609–625.

[16] Rodríguez A., Banach space characterizations of unitaries: A survey, J. Math. Anal. Appl., 2010, 369: 168–178.

[17] Wright J. D. M., Youngson M. A., On isometries of Jordan algebras, J. London Math. Soc., 1978, 17(2): 339–344.

基金

国家自然科学基金(11201337,11201338,11371201,11301384);天津市教委资助项目(20111001)

PDF(443 KB)

327

Accesses

0

Citation

Detail

段落导航
相关文章

/