斜群代数与平凡扩张的表示维数

万前红, 郑立景, 郭晋云

数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 463-468.

PDF(425 KB)
PDF(425 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 463-468. DOI: 10.12386/A2015sxxb0047
论文

斜群代数与平凡扩张的表示维数

    万前红1, 郑立景2, 郭晋云2
作者信息 +

The Representation Dimensions of Skew Algebra and Its Trivial Extension

    Qian Hong WAN1, Li Jing ZHENG2, Jin Yun GUO2
Author information +
文章历史 +

摘要

设Λ是域k上的一个有限维自入射代数,G是一个有限群, 且G的阶在Λ中可逆, Λ*G是斜群代数, T(Λ)是平凡扩张代数, ΛV是外代数.本文证明了Λ的稳定范畴与Λ*G的稳定范畴的三角维数相等, 得到了ΛV * GTV* G)的表示维数.

Abstract

Let Λ be a finite-dimensional selfinjective algebra over k, G be a finite group and the order of G be invertible in Λ, Λ * G be a skew algebra, T(Λ) be its trivial extension, ∧V be the exterior algebra. In this paper, we show the dimensions of stable module categories of selfinjective algebra and skew algebra over it are equal. In particular we obtain the representation dimensions of ∧V * G and T(∧V * G).

关键词

稳定范畴 / 斜群代数 / 表示维数

Key words

stable category / skew algebra / representation dimension

引用本文

导出引用
万前红, 郑立景, 郭晋云. 斜群代数与平凡扩张的表示维数. 数学学报, 2015, 58(3): 463-468 https://doi.org/10.12386/A2015sxxb0047
Qian Hong WAN, Li Jing ZHENG, Jin Yun GUO. The Representation Dimensions of Skew Algebra and Its Trivial Extension. Acta Mathematica Sinica, Chinese Series, 2015, 58(3): 463-468 https://doi.org/10.12386/A2015sxxb0047

参考文献

[1] Auslander M., Representation dimension of Artin algebras, Queen Mary College Mathematics Notes (1971), Reiten I, Smalø S, Solberg Ø. (eds), Selected works of Maurice Auslander, Part 1. American: American Mathematical Society, Providence, 1999: 505-574.

[2] Auslander M., Reiten I., Smalø S., Representation Theory of Artin Algebras, Cambridge University Press, Cambridge, 1995.

[3] Bergh P. A., Representation dimension and finitely generated cohomology, Adv. Math., 2008, 219(1): 389- 400.

[4] Chen X. W., Relative Singularity Categories and Generallized Serre Duality, University of Science and Technology of China, Hefei, 2007 (in Chinese).

[5] Erdmann K., Holloway M., Snashall N., et al., Support varieties for selfinjective Algebras, J. K-Theory, 2004, 33: 67-87.

[6] Erdmann K., Solberg Ø., Radical cube zero weakly symmetric algebras and support varieties, J. Pure Appl. Algebra, 2011, 215(2): 185-200.

[7] Geiß C., de la Peña J. A., Auslander-Reiten components for clans, Bol. Soc. Mat. Mexicana, 1999, 5: 307-326.

[8] Guo J. Y., Yin Y., Zhu C., Returing arrows for self-injective algebras and Artin-Schelter regular algebras, J. Algebra, 2014, 397(1): 365-378.

[9] Happel D., Triangulated Categories in Representation Theory of Finite Dimension Algebra, Cambridge University Press, Cambridge, 1988.

[10] Iyama O., Finiteness of representation dimension, Proc. Amer. Math. Soc., 2003, 131(4): 1011-1014.

[11] Reiten I., Riedtmann C., Skew group algebra in the representation theory of Artin algebras, J. Algebra, 1985, 92: 224-282.

[12] Ringel C. M., Representation theory of finite dimensional algebras, Lecture Notes in Mathematics, 1986, 116: 7-79.

[13] Rouquier R., Dimensions of triangulated categories, J. K-Theory, 2008, 1(2): 193-256.

[14] Rouquier R., Representation dimension of exterior algebras, Invent. Math., 2006, 165(2): 357-367.

[15] Solberg Ø., Support varieties for modules and complexes, In: Trends in Representation Theory of Algebras and Related Topics, de la Peña J. A., Bautista R. (eds), Contemp, Math., Vol.406, Providence: AMS, 2006: 239-270.

基金

国家自然科学基金资助项目(11271119)

PDF(425 KB)

390

Accesses

0

Citation

Detail

段落导航
相关文章

/