三阶上三角算子矩阵点谱,连续谱和剩余谱的扰动

吴秀峰, 黄俊杰, 阿拉坦仓

数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 423-430.

PDF(423 KB)
PDF(423 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 423-430. DOI: 10.12386/A2015sxxb0042
论文

三阶上三角算子矩阵点谱,连续谱和剩余谱的扰动

    吴秀峰, 黄俊杰, 阿拉坦仓
作者信息 +

Perturbations of the Point Spectrum, Continuous Spectrum and Residual Spectrum for Third-Order Upper Triangular Operator Matrices

    Xiu Feng WU, Jun Jie HUANG, Alatancang
Author information +
文章历史 +

摘要

H1, H2,H3为无穷维复可分Hilbert空间, 记MD,E,F=B(H1H2H3). 给定 AB(H1),BB(H2), CB(H3),结合分析方法与算子分块技巧给出了MD,E,F的点谱,连续谱和剩余谱随D, E, F扰动的完全描述.

Abstract

Let H1, H2, H3 be infinite-dimensional complex separable Hilbert spaces, and write MD,E,F = B(H1H2H3). Given the operators AB(H1), BB(H2), CB(H3), some complete descriptions of perturbations of the point spectrum, continuous spectrum and residual spectrum for the partial operator matrix MD,E,F are given, based on the analysis method and block operator technique.

关键词

算子矩阵 / 点谱 / 连续谱 / 剩余谱 / 扰动

Key words

operator matrix / point spectrum / continuous spectrum / residual spectrum / perturbation

引用本文

导出引用
吴秀峰, 黄俊杰, 阿拉坦仓. 三阶上三角算子矩阵点谱,连续谱和剩余谱的扰动. 数学学报, 2015, 58(3): 423-430 https://doi.org/10.12386/A2015sxxb0042
Xiu Feng WU, Jun Jie HUANG, Alatancang. Perturbations of the Point Spectrum, Continuous Spectrum and Residual Spectrum for Third-Order Upper Triangular Operator Matrices. Acta Mathematica Sinica, Chinese Series, 2015, 58(3): 423-430 https://doi.org/10.12386/A2015sxxb0042

参考文献

[1] Cao X., Meng B., Essential approximate point spectra and Weyl's theorem for operator matrices, J. Math. Anal. Appl., 2005, 304: 759-771.

[2] Cao X., Browder essential approximate point spectra and hypercyclicity for operator matrices, Linear Algebra Appl., 2007, 426: 317-324.

[3] Cao X., Weyl's theorem for 3 × 3 upper triangular operator matrices, Acta Mathematica Sinica, Chinese Series, 2006, 49: 529-538.

[4] Chen A., Qi Y., Huang J., Left invertibility of formal Hamiltonian operators, Linear Multilinear Algebra, 2014, http://dx.doi.org/10.1080/03081087.2013.860596.

[5] Djordjevi? D. S., Perturbations of spectra of operator matrices, J. Operator Theory, 2002, 48: 467-486.

[6] Djordjevi? S. V., Zguitti H., Essential point spectra of operator matrices through local spectral theory, J. Math. Anal. Appl., 2008, 338: 285-291.

[7] Du H., Pan J., Perturbation of spectrums of 2 × 2 operator matrices, Proc. Amer. Math. Soc., 1994, 121: 761-766.

[8] Hai G., Possible Spectrums of 3 × 3 Upper Triangular Operator Matrices, Master Thesis, Inner Mongolia University, Hohhot, 2008 (in Chinese).

[9] Hou J., On the spectra of the positive completions for operator matrices, J. Operator Theory, 1995, 33: 299-315.

[10] Hou J., Completion of operator partial matrices to projections, Linear Algebra Appl., 1996, 246: 71-82.

[11] Hou G., Alatancang, Perturbation of spectrums of 2 × 2 upper triangular operator matrices, J. Sys. Sci. Math. Scis., 2006, 26, 2006: 257-263 (in Chinese).

[12] Huang J., Alatancang, Wang H., Self-Adjoint perturbation of spectra of upper triangular operator matrices, Acta Mathematica Sinica, Chinese Series, 2010, 53: 1193-1200.

[13] Huang J., Wu X., Alatancang, Perturbation of the point and residual spectra of 3 × 3 upper triangular operator matrices, J. of Math. (PRC), 2014 (in Chinese).

[14] Hwang I. S., Lee W. Y., The boundedness below of 2 × 2 upper triangular operator matrices, Integral Equations Operator Theory, 2001, 39: 267-276.

[15] Ji Y., Quasitriangular + small compact = strongly irreducible, Trans. Amer. Math. Soc., 1999, 351: 4657- 4673.

[16] Li Y., Du H., The intersection of essential approximate point spectra of operator matrices, J. Math. Anal. Appl., 2006, 323: 1171-1183.

[17] Li Y., Sun X., Du H., The intersection of left (right) spectra of 2 × 2 upper triangular operator matrices, Linear Algebra Appl., 2006, 418: 112-121.

[18] Zerouali E. H., Zguitti H., Perturbation of spectra of operator matrices and local spectral theory, J. Math. Anal. Appl., 2006, 324: 992-1005.

[19] Zhang L., Completion Problems of Operator Matrices and Spectrum of Infinite Dimensional Hamilton Operators, Ph.D. Dissertation, Inner MOngolia University, Hohhot, 2010 (in Chinese).

[20] Zhang H. Y., Du H. K., Browder spectra of upper-triangular operator matrices, J. Math. Anal. Appl., 2006, 323: 700-707.

[21] Zhang S.,Wu Z., Zhong H., Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra Appl., 2010, 433: 653-661.

基金

国家自然科学基金(11461049, 11371185); 内蒙古自治区自然科学基金(2013JQ01, 2013ZD01)

PDF(423 KB)

341

Accesses

0

Citation

Detail

段落导航
相关文章

/