多值Bregman全拟渐近非扩张映像的强收敛性

张石生, 王林, 赵云河, 王刚

数学学报 ›› 2015, Vol. 58 ›› Issue (2) : 213-226.

PDF(569 KB)
PDF(569 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (2) : 213-226. DOI: 10.12386/A2015sxxb0022
论文

多值Bregman全拟渐近非扩张映像的强收敛性

    张石生, 王林, 赵云河, 王刚
作者信息 +

Strong Convergence of Multi-Valued Bregman Totally Quasi-Asymptotically Nonexpansive Mappings

    Shi Sheng ZHANG, Lin WANG, Yun He ZHAO, Gang WANG
Author information +
文章历史 +

摘要

建立了一种算法, 用以寻求自反 Banach 空间中多值 Bregman全拟渐近非扩张映像的有限族的公共不动点,改进和推广了以前的结果(算法是基于与一凸函数有关的 Bregman 距离). 最后,把所得的结果应用于平衡系统问题, 自反 Banach空间中极大单调映像的零点问题.

Abstract

We propose an algorithms for finding a common fixed point of a finite family of multi-valued Bregman total quasi-φ-asymptotically nonexpansive mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding new results announced by many authors. The algorithms are based on the Bregman distance related to a well-chosen convex function. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces.

关键词

非扩张映像 / 全凸函数 / Bregman 投影

Key words

nonexpansive mapping / totally convex function / Bregman projection

引用本文

导出引用
张石生, 王林, 赵云河, 王刚. 多值Bregman全拟渐近非扩张映像的强收敛性. 数学学报, 2015, 58(2): 213-226 https://doi.org/10.12386/A2015sxxb0022
Shi Sheng ZHANG, Lin WANG, Yun He ZHAO, Gang WANG. Strong Convergence of Multi-Valued Bregman Totally Quasi-Asymptotically Nonexpansive Mappings. Acta Mathematica Sinica, Chinese Series, 2015, 58(2): 213-226 https://doi.org/10.12386/A2015sxxb0022

参考文献

[1] Abbas M., Khan S. H., Khan A. R., et al., Commen fixed points of two multi-valued nonexpansive mappings by one-step iterative scheme, Applied Math. Letters, 2011, 24: 97-102.

[2] Bauschke H. H., Borwein J. M., Legendre functions and the method of random Bregman projections, J. Convex Anal., 1997, 4: 27-67.

[3] Bauschke H. H., Borwein J. M., Combettes P. L., Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math., 2001, 3: 615-647.

[4] Browder F. E., Fixed point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA, 1965, 53: 1272-1276.

[5] Butnariu D., Censor Y., Reich S., Iterative averaging of entropic projections for solving stochastic convex feasibility problems, Comput. Optim. Appl., 1991, 8: 21-39.

[6] Butnariu D., Iusem A. N., Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, Dordrecht, 2000.

[7] Butnariu D., Resmerita E., Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006, 2006: 1-39. Art. ID 84919.

[8] Censor Y., Lent A., An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 1981, 34: 321-353.

[9] Chang S. S., Joseph Lee H. W., Chan C. K., A new hybrid method for solving a generalized equilibrium problem solving a variational inequality problem and obtaining common fixed points in Banach spaces with applications, Nonlinear Anal. TMA, 2010, 73: 2260-2270.

[10] Chang S. S., Chan C. K., Joseph Lee H. W., Modified Block iterative algorithm for quasi-φ-asymptotically nonexpansive mappings and equilibrium problem in Banach spaces, Applied Math. Comput., 2011, 217: 7520-7530.

[11] Cholamjiak W., Suantai S., Approximation of common fixed points of two quasi-nonexpansive multi-valued maps in Banach spaces, Computer Math. Appl., 2011, 61: 941-949.

[12] Goebel K., KirkW. A., A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 1972, 35: 171-174.

[13] Halpern B., Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 1967, 73: 957-961.

[14] Homaeipour S., Razani A., Weak and strong convergence theorems for relatively nonexpansive multi-valued mappings in Banach spaces, Fixed Point Theorem Appl., 2011, 73: doi:10.1186/1687-1812.

[15] Kang J., Su Y., Zhang X., Hybrid algorithm for fixed points of weak relatively nonexpansive mappings and applications, Nonlinear Anal. HS, 2010, 4: 755-765.

[16] Martinez-Yanes C., Xu H. K., Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 2006, 64: 2400-2411.

[17] Nilsrakoo W., Saejung S., Strong convergence theorems by Halpern-Mann iterations for relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput., 2011, 217(14): 6577-6586.

[18] Qin X. L., Cho Y. J., Kang S. M., et al., Convergence of a modified Halpern-type iterative algorithm for quasi-φ-nonexpansive mappings, Applied Math. Letters, 2009, 22: 1051-1055.

[19] Qin X. L., Su Y., Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear Anal., 2007, 67: 1958-1965.

[20] Reich S., Sabach S., Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer.l Funct. Anal. Optim., 2010, 31(1): 22-44.

[21] Reich S., Sabach S., Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., 2010, 73: 122-135.

[22] Sabach S., Products of tely many resolvents of maximal monotone mappings in reflexive Banach spaces, SIAM J. Optim., 2011, 21(4): 1289-1308.

[23] Su Y. F., Xu H. K., Zhang X., Strong convergence theorems for two countable families of weak relatively nonexpansive mappings and applications, Nonlinear Anal., 2010, 73: 3890-3906.

[24] Suantai S., Cho Y. J., Cholamjiak P., Halpern's iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput. Math. Appl., 2012, 64: 489-499.

[25] Tang J., Chang S. S., Strong convergence theorems for total quasi-φ-asymptotically nonexpansive multivalued mappings in Banach spaces, Fixed Point Theory Appl., 2012, 2012(63): 21 pages, doi:10.1186/1687- 1812-2012-63.

[26] Wang Z. M., Su Y. F., Wang D. X., et al., A modified Halpern-type iteration algorithm for a family of hemi-relative nonexpansive mappings and systems of equilibrium problems in Banach spaces, J. Comput. Applied Math., 2011, 235: 2364-2371.

基金

国家自然科学基金资助项目(11361070)

PDF(569 KB)

Accesses

Citation

Detail

段落导航
相关文章

/