一类三维不可压非牛顿流的轨道吸引子

赵才地, 吴鹤灵, 李楚进

数学学报 ›› 2015, Vol. 58 ›› Issue (1) : 1-12.

PDF(523 KB)
PDF(523 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (1) : 1-12. DOI: 10.12386/A2015sxxb0001
论文

一类三维不可压非牛顿流的轨道吸引子

    赵才地1, 吴鹤灵1, 李楚进2
作者信息 +

Trajectory Attractor for a Class of Three-Dimensional Incompressible Non-Newtonian Fluids

    Cai Di ZHAO1, He Ling WU1, Chu Jin LI2
Author information +
文章历史 +

摘要

讨论了一类自治不可压非牛顿流方程组在三维有界区域上解的轨道渐近行为,证明了该类方程组在适当的拓扑空间中存在轨道吸引子.

Abstract

This paper studies the trajectory asymptotic behavior of solutions for equations of a class of three-dimensional autonomous and incompressible non-Newtonian fluids. The authors prove the existence of the trajectory attractor for this class of equations in an appropriate topological space.

关键词

不可压非牛顿流方程组 / 轨道吸引子 / 拓扑空间

Key words

equations of incompressible non-Newtonian fluid / trajectory attractor / topological space

引用本文

导出引用
赵才地, 吴鹤灵, 李楚进. 一类三维不可压非牛顿流的轨道吸引子. 数学学报, 2015, 58(1): 1-12 https://doi.org/10.12386/A2015sxxb0001
Cai Di ZHAO, He Ling WU, Chu Jin LI. Trajectory Attractor for a Class of Three-Dimensional Incompressible Non-Newtonian Fluids. Acta Mathematica Sinica, Chinese Series, 2015, 58(1): 1-12 https://doi.org/10.12386/A2015sxxb0001

参考文献

[1] Adams R. A., Sobolev Spaces, Academic Press, New York, 1975.

[2] Ball J. M., Continuity properties of global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonl. Sci., 1997, 7: 475-502.

[3] Bellout H., Bloom F., Ne?as J., Young measure-valued solutions for non-Newtonian incompressible viscous fluids, Comm. PDE, 1994, 19: 1763-1803.

[4] Bloom F., Hao W., Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness of solutions, Nonl. Anal., 2001, 44: 281-309.

[5] Caraballo T., Langa J., Valero J., Global attractors for multivalued random dynamical systems generated by random differential inclusions with multiplicative noise, J. Math. Anal. Appl., 2001, 260: 602-622.

[6] Caraballo T., M-Rubio P., Robinson J., A comparison between two theories for multivalued semiflows and their asymptotic behavior, Set-Valued Anal., 2003, 11: 297-322.

[7] Chepyzhov V. V., Vishik M. I., Evolution equations and their trajectory attractors, J. Math. Pures Appl., 1997, 76: 913-664.

[8] Chepyzhov V. V., Vishik M. I., Attractors for Equations of Mathematical Physics, AMS, R.I., 2002.

[9] Dong B., Chen Z., Time decay rates of non-Newtonian flows in R+n, J. Math. Anal. Appl., 2006, 324: 820-833.

[10] Dong B., Jiang W., On the decay of higher order derivatives of solutions to Ladyzhen-skaya model for incompressible viscous flows, Sci. China Ser. A., 2008, 51: 925-934.

[11] Guo B., Guo C., The convergence for non-Newtonian fluids to Navier-Stokes equations in 3D domain, Inter. J. Dyna. Syst. Diff. Equa., 2009, 2: 129-138.

[12] Guo B., Lin G., Shang Y., Dynamics of Non-Newtonian Fluid, National Defence Industry Press, Beijing, 2006.

[13] Guo B., Zhu P., Partial regularity of suitable weak solution to the system of the incompressible non-Newtonian fluids, J. Differential Equations, 2002, 178: 281-297.

[14] Kapustyan A. V., Valero J., Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 2007, 240: 249-278.

[15] Ladyzhenskaya O., New Equations for the Description of the Viscous Incompressible Fluids and Solvability in Large of the Boundary Value Problems for Them, in Boundary Value Problems of Mathematical Physics, AMS, R.I., 1970.

[16] Li Y., Zhao C., Global attractor for a non-Newtonian system in two-dimensional unbounded domains, Acta Anal. Funct. Appl., 2002, 4: 343-349.

[17] Málek J., Ne?as J., Rokyta M., et al., Weak and Measure-valued Solutions to Evolutionary PDEs, Champman-Hall, New York, 1996.

[18] Melnik V., Valero J., On global attractors of multivalued semiprocess and nonautonomous evolution inclusions, Set-Valued Anal., 2000, 8: 375-403.

[19] Pokorný M., Cauchy problem for the non-Newtonian viscous incompressible fluids, Appl. Math., 1996, 41: 169-201.

[20] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer, Berlin, 1997.

[21] Vishik M. I., Chepyzhov V. V., Trajectory and global attractors of three-dimensional Navier-Stokes systems, Math. Notes, 2002, 77: 177-193.

[22] Vishik M. I., Chepzhov V. V., Trajectory attractors of equations of mathematical physics, Russian Math. Surveys, 2011, 4: 639-731.

[23] Wang Y., Zhou S., Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differential Equations, 2007, 232: 573-622.

[24] Zhao C., Approximation of the incompressible non-Newtonian fluid equations by the artificial compressibility method, Math. Meth. Appl. Sci., 2013, 36: 840-856.

[25] Zhao C., Duan J., Convergence of global attractor of 2D non-Newtonian system to global attractor of 2D Navier- Stokes system, Science China: Mathematics, 2013, 56(2): 253-265.

[26] Zhao C., Li Y., H2-compact attractor for a non-Newtonian system in two-dimensional unbounded domains, Nonl. Anal., 2004, 56: 1091-1103.

[27] Zhao C., Liu G., Wang W., Smooth pullback attractors for non-autonomous 2D non-Newtonian fluid and their tempered behavior, J. Math. Fluids Mech., 2014, 16: 243-262.

[28] Zhao C., Li Y., Zhou S., Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid, J. Differential Equations, 2009, 247: 2331-2363.

[29] Zhao C., Zhou S., Pullback attractors for nonautonomous incompressible non-Newtonian fluid, J. Differential Equations, 2007, 238: 394-425.

[30] Zhao C., Zhou S., Li Y., Trajectory attractor and global attractor for a two-dimensional incompressible non-Newtonian fluid, J. Math. Anal. Appl., 2007, 325: 1350-1362.

[31] Zhao C., Zhou S., Li Y., Existence and regularity of pullback attractors for an incompressible non-Newtonian fluid with delays, Quart. Appl. Math., 2009, 61: 503-540.

基金

国家自然科学基金资助项目(11271290)

PDF(523 KB)

245

Accesses

0

Citation

Detail

段落导航
相关文章

/