弱对称空间的迷向表示和不变仿射联络

安慧辉

数学学报 ›› 2014, Vol. 57 ›› Issue (6) : 1109-1126.

PDF(546 KB)
PDF(546 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (6) : 1109-1126. DOI: 10.12386/A2014sxxb0102
论文

弱对称空间的迷向表示和不变仿射联络

    安慧辉
作者信息 +

Isotropy Representations and Invariant Affine Connections on Weakly Symmetric Spaces

    Hui Hui AN
Author information +
文章历史 +

摘要

弱对称空间是对称空间的推广.本文讨论了一些特殊类型的弱对称空间的迷向表示,给出了带有约化的等距变换群的弱对称空间上的不变仿射联络.

Abstract

Weakly symmetric space is the generalization of symmetric space.We discuss the isotropy representations of some special type of weakly symmetric spaces.We also give the invariant affine connections on weakly symmetric spaces with reductive groups.

关键词

弱对称空间 / 不变仿射联络 / 迷向表示

Key words

weakly symmetric space / invariant affine connection / isotropy representation

引用本文

导出引用
安慧辉. 弱对称空间的迷向表示和不变仿射联络. 数学学报, 2014, 57(6): 1109-1126 https://doi.org/10.12386/A2014sxxb0102
Hui Hui AN. Isotropy Representations and Invariant Affine Connections on Weakly Symmetric Spaces. Acta Mathematica Sinica, Chinese Series, 2014, 57(6): 1109-1126 https://doi.org/10.12386/A2014sxxb0102

参考文献

[1] Akhiezer D.N., Vinberg E.B., Weakly symmetric spaces and spherical varieties, Transform.Groups, 1999. 4(1): 3-24.

[2] Berndt J., Vanhecke L., Geometry of weakly symmetric spaces, J.Math.Soc.Japan, 1996, 48(4): 745-760.

[3] Berndt J., Kowalski O., Vanhecke L., Geodesics in weakly symmetric spaces, Ann.Global Anal.Geom., 1997. 15(2): 153-156.

[4] Brion M., Classification des espaces homogènes sphériques (in French), Classification of Spherical Homogeneous Spaces Compositio Math., 1987, 63(2): 189-208.

[5] Elduque A., Myung H.C., Color algebras and affine connections on S6, J.Alge., 1992, 149: 234-261.

[6] Elduque A., Myung H.C., The reductive pair (B3,G2) and affine connections on S7, J.Pure.Appl.Alge., 1993, 86(2): 155-171.

[7] Fischler M., Young-tableau methods for Kronecker products of representations of the classical groups, J. Math.Phys., 1981, 22(4): 637-648.

[8] Gordon C.S., Homogeneous Riemannian manifolds whose geodesics are orbits, Topics in geometry, Progr. Nonlinear Differential Equations Appl., 1996, 20: 155-174.

[9] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978.

[10] Humphreys J.E., An Introduction to Lie Algebras and their Representations, Springer-Verlag, New York, 1972.

[11] Kobayashi S., Nomizu K., Foundations of Differential Geometry, Interscience Publishers, New York, Vol.1. 1963, Vol 2, 1969.

[12] Kowalski O., Vanhecke L., Riemannian manifolds with homogeneous geodesics, Boll.Un.Mat.Ital., 1991. 58(1): 189-246.

[13] Lauret J., Homogeneous nilmanifolds attached to representations of compact Lie groups, Manuscripta Mathematica, 1999, 99(3): 287-309.

[14] Turner Laquer H., Invariant affine connections on Lie groups, Trans.Amer.Math.Soc., 1992, 331(2): 541-551.

[15] Turner Laquer H., Invariant affine connections on symmetric spaces, Proc.Amer.Math.Soc., 1992, 115(2): 447-454.

[16] MaKay W.G., Patera J., Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras, Marcel Dekker, New York, 1981.

[17] Nguýen H., Characterizing weakly symmetric spaces as Gelfand pairs, J.Lie Theory, 1999, 9(2): 285-291.

[18] Nomizu K., Invariant affine connections on homogeneous spaces, Amer.J.Math., 1954, 76(1): 33-65.

[19] Selberg A., Harmonic analysis and discontineous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J.Indian Math.Soc.(N.S.), 1956, 20: 47-87.

[20] Wang H.C., On invariant connections over a principal fibre bundle, Nagoya Math.J., 1958, 13: 1-19.

[21] Wolf J., The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math., 1968, 120(1): 59-148; Correction, Acta Math., 1984, 152(1): 141-142.

[22] Yakimova O.S., Weakly symmetric Riemannian manifolds with a reductive isometry group, Sb.Math., 2004. 195(4): 599-614.

[23] Yakimova O.S., Weakly symmetric spaces of semisimple Lie groups, Moscow Univ.Math.Bull., 2002, 57(2): 37-40.

[24] Ziller W., Weakly symmetric spaces, Topics in geometry, Progr.Nonlinear Differential Equations Appl., 1996, 20: 355-368.

基金

国家自然科学基金资助项目(11071106, 11126133, 11471151)

PDF(546 KB)

254

Accesses

0

Citation

Detail

段落导航
相关文章

/