g-框架的一些新性质

郭训香

数学学报 ›› 2014, Vol. 57 ›› Issue (5) : 881-892.

PDF(492 KB)
PDF(492 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (5) : 881-892. DOI: 10.12386/A2014sxxb0082
论文

g-框架的一些新性质

    郭训香
作者信息 +

Some New Properties of g-Frames

    Xun Xiang GUO
Author information +
文章历史 +

摘要

考虑了g-框架的一些新性质.首先把有关框架的投影方法推广到g-框架,并且建立了一个类似的该方法对g-框架有效的充分必要条件.然后研究了包含g-Riesz基的g-框架,得到了在某些条件下g-Riesz框架一定包含g-Riesz 基.我们提出了具有子g-框架性质的g-框架的概念,证明了在某些条件下具有子g-框架性质的g-框架一定包含一个g-Riesz基.最后得到了一些g-框架与其诱导出的框架之间的在某些限制条件下的等价性质.

Abstract

In this paper, some properties of g-frames are considered. Firstly, we generalize the projection methods for frames to g-frames and a similar if and only if condition for such method works is established. Then we study the g-frames which contain g-Riesz bases. We obtain that under some constraint g-Riesz frame contains a g-Riesz basis. We also introduce the conception of g-frames with sub-g-frame property and show that under some restriction g-frame with sub-g-frame property contains a g-Riesz basis. Finally, we get several equivalent properties between g-frames and frames induced by the g-frames under some assumptions.

关键词

g-框架 / g-Riesz基 / g-Riesz框架 / g-框架性质 / g-线性无关

Key words

g-frame / g-riesz basis / g-riesz frame / sub-g-frame property / g-linearly independent

引用本文

导出引用
郭训香. g-框架的一些新性质. 数学学报, 2014, 57(5): 881-892 https://doi.org/10.12386/A2014sxxb0082
Xun Xiang GUO. Some New Properties of g-Frames. Acta Mathematica Sinica, Chinese Series, 2014, 57(5): 881-892 https://doi.org/10.12386/A2014sxxb0082

参考文献

[1] Abdollahi A., Rahimi E., Some results on g-frames in Hilbert spaces, Turk J. Math., 2011, 35: 695-704.

[2] Christensen O., An Introduction to Frames and Riestz Bases, Birkh¨auser, Boston, 2003.

[3] Christensen O., Frames and the projection method, Appl. Computat. Harmonic Anal., 1993, 1: 50-53.

[4] Christensen O., Finite-dimensional approximation of the inverse frame operator, J. Fourier Anal. Appl.,2000, 6(1): 79-91.

[5] Christensen O., Frames containing a Riesz basis and approximation of the frame coefficients using finite-dimensional methods, J. Math. Anal. Appl., 1996, 199: 256-270.

[6] Casazza P. G., Christensen O., Riesz frames and approximation of the frame coefficients, Approx. TheoryAppl., 1998, 14(2): 1-11.

[7] Casazza P. G., Christensen O., Approximation of the frame coefficients using finite-dimensional methods, J.Electronic Imaging, 1997, 6(4): 479-483.

[8] Casazza P. G., Characterizing Hilbert space frames with the subframe property, Illinois J. Math., 1997, 4(4):648-666.

[9] Casazza P. G., Hilbert space frames containing a Riesz basis and Banach spaces which have no subspaceIsomorthic to C0, J. Math. Anal. Appl., 1996, 202(3): 940-950.

[10] Daubechies I., Grossmann A., Meyer Y., Painless nonorthognal expansions, J. Math. Phys., 1986, 27: 1271-1283.

[11] Daubchies I., Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

[12] Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72:341-366.

[13] Ding M. L., Zhu Y. C., g-Besselian frames in Hilbert spaces, Acta Math., 2010, 26: 2117-2130.

[14] Frazier M., Jawerth B., Decompositions of Besov spaces, Indiana Univ. Math. J., 1985, 34: 777-799.

[15] Feichtinger H. G., Strohmer T., Gabor Analysis and Algorithms: Theory and Applications, Birkh¨auser,Boston, MA, 1998.

[16] Gabor D., Theory of communications, J. Inst. Elec. Eng., 1946, 93: 429-457.

[17] Grochenig K., Describing functions: atomic decompositions versus frames, Monatshefte fur Math., 1991,112: 1-41.

[18] Guo X. X., g-Bases in Hilbert spaces, Abstr. Appl. Anal., Volume 2012, Article ID 923729, 14 pages,doi:10.1155/2012/923729.

[19] Han D., Larson D. R., Frames, basis and group representations, Mem. Amer. Math. Soc., 2000, 147.

[20] Heil C., Walnut D., Continuous and discrete wavelet transforms, SIAM Rev., 1989, 31: 628-666.

[21] Khosravi A., Musazadeh K., Fusion frames and g-frames, J. Math. Anal. Appl., 2008, 342: 1068-1083.

[22] Li J. Z., Zhu Y. C., g-Riesz frames in Hilbert spaces (in Chinese), Sci. Sin. Math., 2011, 41(1): 53-68.

[23] Najati A., Faroughi M. H., Rahimi A., G-frames and stability of g-frames in Hilbert spaces, Methods Funct.Anal. Topol., 2008, 14(3): 271-286.

[24] Sun W. C., G-frames and g-Riesz bases, J. Math. Anal. Appl., 2006, 322: 437-452.

[25] Wang Y. J., Zhu Y. C., G-frames and g-frames sequences in Hilbert spaces, Acta Mathematica Sinica, EnglishSeries, 2009, 25(12): 2093-2106.

[26] Zhu Y. C., Characterizations of g-frames and g-Riesz bases in Hilbert spaces, Acta Mathematica Sinica,English Series, 2008, 24: 1727-1736.
PDF(492 KB)

264

Accesses

0

Citation

Detail

段落导航
相关文章

/