含时滞导数项的二阶中立型泛函微分方程的正周期解

李永祥

数学学报 ›› 2014, Vol. 57 ›› Issue (3) : 505-516.

PDF(486 KB)
PDF(486 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (3) : 505-516. DOI: 10.12386/A2014sxxb0048
论文

含时滞导数项的二阶中立型泛函微分方程的正周期解

    李永祥
作者信息 +

Positive Periodic Solutions of Second-Order Neutral Functional Differential Equations with Delayed Derivative Terms

    Yong Xiang LI
Author information +
文章历史 +

摘要

研究了非线性项中含有时滞导数项的二阶中立型泛函微分方程(ut)-cut-δ))"+atut)=ft,ut),ut-τt)),u'tat)))正周期解的存在性,获得了该方程存在正周期解和不存在正周期解的本质条件.这些条件是由系数函数at)与非线性项ft, x, y, z)的关系描述的.我们的讨论基于正算子扰动方法与锥上的不动点指数理论.

Abstract

This paper deals with the existence of positive ω-periodic solutions for the second-order neutral functional differential equation with a delayed derivative term in nonlinearity (u(t)-cu(t-δ))"+a(t)u(t)=f(t,u(t),u(t-τ(t)),u'(ta(t))) The essential conditions on the existence and nonexistence of positive periodic solutions of the equation are obtained. The conditions concern with the relation of the coefficient function a(t) and nonlinearity f(t, x, y, z).Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones.

关键词

中立型泛函微分方程 / 正周期解 / 凸锥 / 不动点指数

Key words

neutral functional differential equation / positive periodic solution / cone / fixed point index

引用本文

导出引用
李永祥. 含时滞导数项的二阶中立型泛函微分方程的正周期解. 数学学报, 2014, 57(3): 505-516 https://doi.org/10.12386/A2014sxxb0048
Yong Xiang LI. Positive Periodic Solutions of Second-Order Neutral Functional Differential Equations with Delayed Derivative Terms. Acta Mathematica Sinica, Chinese Series, 2014, 57(3): 505-516 https://doi.org/10.12386/A2014sxxb0048

参考文献

[1] Atici F. M., Guseinov G. Sh., On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J. Comput. Appl. Math., 2001, 132(2): 341-356.
[2] Cheung W. S., Ren J. L., Han W., Positive periodic solution of second-order neutral functional differential equations, Nonlinear Analysis: TMA, 2009, 71(9): 3948-3955.
[3] Deimling K., Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
[4] Graef J. R., Kong L., Wang H., Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem, J. Diffential Equations, 2008, 245(5): 1185-1197.
[5] Guo C. J., Guo Z. M., Existence of multiple periodic solutions for a class of second-order delay differential equations, Nonlinear Analysis: RWA, 2009, 10(5): 3285-3297.
[6] Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
[7] Hale J. K., Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
[8] Kuang Y., Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.
[9] Li F., Liang Z., Existence of positive periodic solutions to nonlinear second order differential equations, Applied Math. Lett., 2005, 18(11): 1256-1264.
[10] Li J. W., Cheng S. S., Periodic solutions of a second order forced sublinear differential equation with delay, Applied Math. Lett., 2005, 18(12): 1373-1380.
[11] Li Y., Positive periodic solutions of nonlinear second order ordinary differential equations, Acta Mathematica Sinica, Chinese Series, 2002, 45(3): 481-488.
[12] Li Y., Positive periodic solutions of first and second order ordinary differential equations, Chinese Ann. Math. Ser. B, 2004, 25(3): 413-420.
[13] Liu B., Periodic solutions of a nonlinear second-order differential equation with deviating argument, J. Math. Anal. Appl., 2005, 309(1): 313-321.
[14] Liu B. W., Huang L. H., Existence and uniqueness of periodic solutions for a kind of second order neutral functional differential equations, Nonlinear Analysis: RWA, 2007, 8(1): 222-229.
[15] Shen J., Liang R., Periodic solutions for a kind of second order neutral functional differential equations, Appl. Math. Comput., 2007, 190(2): 1394-1401.
[16] Torres, P. J., Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Diffential Equations, 2003, 190(2): 643-662.
[17] Wang Y., Lian H., Ge W., Periodic solutions for a second order nonlinear functional differential equation, Applied Math. Lett., 2007, 20(1): 110-115.
[18] Wu J., Wang Z., Two periodic solutions of second-order neutral functional differential equations, J. Math. Anal. Appl., 2007, 329(1): 677-689.
[19] Wu Y. X., Existence nonexistence and multiplicity of periodic solutions for a kind of functional differential equation with parameter, Nonlinear Analysis: TMA, 2009, 70(1): 433-443.
[20] Zhang M., Periodic solution of linear and quasilinear neutral functional differential equations, J. Math. Anal. Appl., 1995, 189(2): 378-392.

基金

国家自然科学基金资助项目(11261053,11061031);甘肃省自然科学基金资助项目(1208RJZA129)
PDF(486 KB)

313

Accesses

0

Citation

Detail

段落导航
相关文章

/