某些抛物型算子在加权Lp空间和Morrey空间上的估计

高文华, 江寅生

数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 699-710.

PDF(509 KB)
PDF(509 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 699-710. DOI: 10.12386/A2013sxxb0070
论文

某些抛物型算子在加权Lp空间和Morrey空间上的估计

    高文华1, 江寅生2
作者信息 +

Estimates for Some Parabolic Operators with Certain Potentials on Weighted Lp Spaces and Morrey Spaces

    Wen Hua GAO1, Yin Sheng JIANG2
Author information +
文章历史 +

摘要

考虑了一致抛物型算子L=∂t-∑ni,j=1i(ai,j(x)∂j)+V(x),其中势函数V(x)是Rn(n≥3)上的非负函数,并且属于反霍尔德类.得到了算子L的基本解的梯度估计,以及算子VL-1,V1/2L-1V1/2L-1/2在加权Lp(Rn+1)空间和Morrey空间上的估计.

Abstract

The uniformly parabolic operator L=∂t-∑ni,j=1i(ai,j(x)∂j)+V(x) is considered in this paper, where the potential V(x) is a non-negative function on Rn(n≥3), and belongs to reverse Hölder class. The estimate for the gradient of the fundamental solution of the operator L is studied and several estimates for VL-1,V1/2L-1 and V1/2L-1/2 on weighted Lp(Rn+1) spaces and Morrey spaces are obtained under certain assumptions on ai,j, V and p.

关键词

一致抛物算子 / 基本解 / 反霍尔德类 / 加权Lp空间 / Morrey空间

Key words

uniformly parabolic operator / fundamental solution / reverse Hölder class / weighted Lp space / Morrey space

引用本文

导出引用
高文华, 江寅生. 某些抛物型算子在加权Lp空间和Morrey空间上的估计. 数学学报, 2013, 56(5): 699-710 https://doi.org/10.12386/A2013sxxb0070
Wen Hua GAO, Yin Sheng JIANG. Estimates for Some Parabolic Operators with Certain Potentials on Weighted Lp Spaces and Morrey Spaces. Acta Mathematica Sinica, Chinese Series, 2013, 56(5): 699-710 https://doi.org/10.12386/A2013sxxb0070

参考文献

[1] Coifman R., Weiss G., Analyse Harmonique Non-Commutative sur Certains Espaces Homog'enes, Lecture Notes in Mathematics, No. 242, Springer-Verlag, Berlin, Heideberg, New York, 1971.
[2] Gao W., Jiang Y., Lp estimate for parabolic Schrödinger operartor with certain potentials, J. Math. Anal. Appl., 2005, 310: 128-143.
[3] Gehring F., The integrability of the partial derivatives of a quasi-conformal mapping, Acta Math., 1973, 130: 265-277.
[4] Kurata K., An estimate on the heat kernel of magnetic Schödinger operators and uniformly elliptic operators with non-negative potentials, J. London Math. Soc., 2000, 62: 885-903.
[5] Kurata K., Sugano S., A remark on estimates for uniformly elliptic operators on weighted Lp spaces and Morrey spaces, Math. Nachr., 2000, 209: 137-150.
[6] Muckenhoupt B., Weighted norm inequality for Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165: 207-226.
[7] Friedman A., Partial Differential Equations of Parabolic Type, 1964 by Prentice-Hall. INC. Englewood Cliff. N.J., 1964.
[8] Shen Z., Lp estimates for Schrödinger operartors with certain potentials, Ann. Inst. Fourier, Grenoble., 1995, 45(2): 513-546.
[9] Stein E., Harmonic Analysis Real-variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.
[10] Tang L., Lp estimates for parabolic magnetic Schrödinger operartors, Forum Mathematicum, 2010, 22(2): 203-220.
[11] Zhong J., Harmonic Analysis for Schödinger Type Operators, Ph.D. Thesis, Princeton University, 1993; Dissert. Math., 1979, 162.

基金

国家自然科学基金资助项目(10881010,11161044)

PDF(509 KB)

326

Accesses

0

Citation

Detail

段落导航
相关文章

/