考虑了一致抛物型算子L=∂t-∑ni,j=1∂i(ai,j(x)∂j)+V(x),其中势函数V(x)是Rn(n≥3)上的非负函数,并且属于反霍尔德类.得到了算子L的基本解的梯度估计,以及算子VL-1,V1/2▽L-1和V1/2L-1/2在加权Lp(Rn+1)空间和Morrey空间上的估计.
Abstract
The uniformly parabolic operator L=∂t-∑ni,j=1∂i(ai,j(x)∂j)+V(x) is considered in this paper, where the potential V(x) is a non-negative function on Rn(n≥3), and belongs to reverse Hölder class. The estimate for the gradient of the fundamental solution of the operator L is studied and several estimates for VL-1,V1/2▽L-1 and V1/2L-1/2 on weighted Lp(Rn+1) spaces and Morrey spaces are obtained under certain assumptions on ai,j, V and p.
关键词
一致抛物算子 /
基本解 /
反霍尔德类 /
加权Lp空间 /
Morrey空间
{{custom_keyword}} /
Key words
uniformly parabolic operator /
fundamental solution /
reverse Hölder class /
weighted Lp space /
Morrey space
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Coifman R., Weiss G., Analyse Harmonique Non-Commutative sur Certains Espaces Homog'enes, Lecture Notes in Mathematics, No. 242, Springer-Verlag, Berlin, Heideberg, New York, 1971.
[2] Gao W., Jiang Y., Lp estimate for parabolic Schrödinger operartor with certain potentials, J. Math. Anal. Appl., 2005, 310: 128-143.
[3] Gehring F., The integrability of the partial derivatives of a quasi-conformal mapping, Acta Math., 1973, 130: 265-277.
[4] Kurata K., An estimate on the heat kernel of magnetic Schödinger operators and uniformly elliptic operators with non-negative potentials, J. London Math. Soc., 2000, 62: 885-903.
[5] Kurata K., Sugano S., A remark on estimates for uniformly elliptic operators on weighted Lp spaces and Morrey spaces, Math. Nachr., 2000, 209: 137-150.
[6] Muckenhoupt B., Weighted norm inequality for Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165: 207-226.
[7] Friedman A., Partial Differential Equations of Parabolic Type, 1964 by Prentice-Hall. INC. Englewood Cliff. N.J., 1964.
[8] Shen Z., Lp estimates for Schrödinger operartors with certain potentials, Ann. Inst. Fourier, Grenoble., 1995, 45(2): 513-546.
[9] Stein E., Harmonic Analysis Real-variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.
[10] Tang L., Lp estimates for parabolic magnetic Schrödinger operartors, Forum Mathematicum, 2010, 22(2): 203-220.
[11] Zhong J., Harmonic Analysis for Schödinger Type Operators, Ph.D. Thesis, Princeton University, 1993; Dissert. Math., 1979, 162.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(10881010,11161044)
{{custom_fund}}