分析了Rd,d=2,3维不可压缩流Stokes问题低次元稳定有限体积方法.它主要利用局部压力投影方法对两种流行但不满足inf-sup条件的有限元配对(P1-P0和P1-P1)在有限体积方法的框架下进行稳定;利用有限元与有限体积方法的等价性进行有限体积方法理论分析.结果表明不可压缩流Stokes问题在f∈H1情况下,本文方法得到的解与稳定有限元方法解之间具有O(h2)阶超收敛阶结果,且稳定有限体积方法 取得了与稳定有限元方法相同的收敛速度.与稳定有限元方法比较, 稳定有限体积方法计算简单高效, 同时保持物理守恒, 因此在实际应用中具有很好的潜力.
Abstract
In this paper, the stabilized finite volume method is considered for the Rd,d=2, 3 Stokes equations approximated by the lower order finite element pairs (P1-P0 and P1-P1), which do not satisfy the so-called inf-sup condition. This method applies the local pressure projection to stabilize the lower order finite element. The convergence analysis also shows an important superclose result O(h2) between the conforming mixed finite element solution and the finite volume solution using the same finite element pair for the incompressible flow. Based on the relationship between the finite element method and finite volume method, optimal estimate and superconvergenc result are obtained. Moreover, the stabilized finite volume method has a convergence rate of the same order as that of the usual stabilized finite element method of the stationary Stokes equations with additional regular assumption on the body force f ∈H1.
关键词
不可压缩Stokes问题 /
低次元 /
inf-sup条件 /
稳定有限元方法 /
稳定有限体积方法
{{custom_keyword}} /
Key words
Stokes equations /
the local pressure projection /
inf-sup condition /
stabilizedfinite element method /
stabilized finite volume method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bochev P. B., Gunzburger M. D., An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations, SIAM J. Numer. Anal., 2004, 42(3): 1189–1207.
[2] Bochev P. B., Dohrmann C. R., Gunzburger M. D., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 2006, 44(1): 82–101.
[3] Silvester D. J., Optimal low-order finite element methods for incompressible flow, Comp. Meth. Appl. Mech. Engrg., 1994, 111(3/4): 357–368.
[4] Silvester D. J., Stabilised Mixed Finite Element Methods, Numerical Analysis Report No. 262, 1995.
[5] Silvester D. J., Stabilised Vs Stable Mixed Finite Element Methods for Incompressible Flow, Numerical Analysis Report No. 307, 1997.
[6] Brezzi F., Douglas J., Stabilized mixed methods for the Stokes problem, Numer. Math., 1988, 53(1/2): 225–235.
[7] Brezzi F., Fortin M., A minimal stabilisation procedure for mixed finite element methods, Numer. Math., 2001, 89(3): 457–491.
[8] Douglas J., Wang J., An absolutely stabilized finite element method for the Stokes problem, Math. Comp., 1989, 52(186): 495–508.
[9] Temam R., Navier–Stokes Equations, Theory and Numerical Analysis, third ed, North-Holland, Amsterdam, 1983.
[10] Girault V., Raviart P. A., Finite Element Method for Navier–Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, Heidelberg, 1987.
[11] Li R., Zhu P., Generalized difference methods for second order elliptic partial differential equations (I)-triangle grids, Numer. Math. J. Chinese Universities, 1982, 2: 140–152.
[12] Li R., On Generalized Difference Methods for Elliptic and Parabolic Differential Equations, the Symposium on the Finite Element Method between China and France, K. Feng and J. L. Lions, editors, Science Press, Beijing, China, 1982: 323–360.
[13] Chen Z., Li R., Zhou A., A note on the optimal L2-estimate of finite volume element method, Adv. Comput. Math., 2002, 16(4): 291–303.
[14] Chou S. H., Li Q., Error estimates in L2, H1 and Li in co-volume methods for elliptic and parabolic problems: a unified approach, Math. Comp., 2002, 69(99): 103–120.
[15] Lv J. L., Li Y. H., L2 error estimate of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math., 2010, 33(2): 129–148.
[16] Ye X., On the relationship between finite volume and finite element methods applied to the Stokes equations, Numer. Methods Partial Diff. Equ., 2001, 17(5): 440–453.
[17] Li J., Chen Z. X., A New Stabilized Finite Volume Method for the Stationary Stokes Equations, Adv. Comput. Math., 30(2): 141–152.
[18] Li J., He Y. N., A stabilized finite element method based on two local Gauss integral technique for the stationary Stokes equations, J. Comp. Appl. Math., 2008, 214(1): 58–65.
[19] Pironneau O., Hecht F., Hyaric A. L., Morice J., FreeFem++Manual, Version 3.9-1, http://www.freefem.org, 2010.
[20] Han H. D., Wu X. N., the mixed finite element method for the Stokes equations on unbounded domain, J. Sys. Sci. and Math. Sci., 1985, 5(2): 121–132.
[21] Yu D. H., the coupling of natural BEM and FEM for Stokes problem on unbounded domain, Chinese J. of Numer. Math. and Appl., 1992, 14(2): 111–120.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(11071193, 10971124);教育部新世纪优秀人才支持计划(NCET-11-1041);教育部留学回国人员基金、博士后基金(2012M511973);陕西青年科技新星项目(2011kjxx12);宝鸡文理学院基金(ZK11157)
{{custom_fund}}