带加法白噪声的随机Boussinesq方程组的解的渐近行为

赵文强, 李扬荣

数学学报 ›› 2013, Vol. 56 ›› Issue (1) : 1-14.

PDF(535 KB)
PDF(535 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (1) : 1-14. DOI: 10.12386/A2013sxxb0001
论文

带加法白噪声的随机Boussinesq方程组的解的渐近行为

    赵文强1, 李扬荣2
作者信息 +

Asymptotic Behavior of Stochastic Boussinesq Equations with Additive White Noises

    Wen Qiang ZHAO1, Yang Rong LI2
Author information +
文章历史 +

摘要

考虑速度和温度同时在加法白噪声扰动下的随机Boussinesq方程组的解的渐近特征.可以按轨道得到该随机方程组的唯一解,并可以验证该解生成随机动力系统,进而证明了该随机动力系统存在随机吸引子.

Abstract

This paper is devoted to the investigation of asymptotic behavior of stochastic Boussinesq equations influenced by random exterior forced white noises both in the velocity and in the temperature fields. It is showed that the stochastic Boussinesq equations can be solved path-wise and the unique solution generates a random dynamical system. Then the existence of a random attractor for the generated random dynamical system is established.

关键词

随机动力系统 / 随机Boussinesq方程组 / 随机吸引子 / 加法白噪声

Key words

random dynamical system / stochastic Boussinesq equations / random attractors / additive white noises

引用本文

导出引用
赵文强, 李扬荣. 带加法白噪声的随机Boussinesq方程组的解的渐近行为. 数学学报, 2013, 56(1): 1-14 https://doi.org/10.12386/A2013sxxb0001
Wen Qiang ZHAO, Yang Rong LI. Asymptotic Behavior of Stochastic Boussinesq Equations with Additive White Noises. Acta Mathematica Sinica, Chinese Series, 2013, 56(1): 1-14 https://doi.org/10.12386/A2013sxxb0001

参考文献

[1] Adhikari D., Cao C. S., Wu J. H., The 2D Boussinesq equations with vertical viscosity and vertical diffusivity, J. Diff. Equ., 2010, 249(5): 1078–1088.

[2] Lee H. C., Analysis and computational methods of dirichlet bound optimal control problem for 2D Boussinesq equations, Adv. Comp. Math., 2003, 19(1-3): 255–275.

[3] Wang S. B., Xue H. X., Global solution for a generalized Boussinesq equation, Appl. Math. Compu., 2008, 204(1): 130–136.

[4] Guo B. L., Nonlinear Galerkin methods for solving two dimensional Boussinesq equations, Chin. Ann. Math., 1995, 16B(3): 379–390.

[5] Guo B. L., Spectral methods for solving two dimensional Newton-Boussinesq equations, Acta Math. Appl. Sinica, 1989, 5(3): 208–218.

[6] Guo B. L., Guang W. Y., On the suitable weak solutions to the Boussinesq equations in a bounded domain, Acta Mathematica Sinica, New Series, 1996, 12(2): 205–216.

[7] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.

[8] Crauel H., Flandoli F., Attractors for random dynamical systems, Prob. Theory Related Fields, 1994, 100(3): 365–393.

[9] Schmalfuss B., Backward Cocycle and Attractors of Stochastic Differential Equations, in: V. Reitmann, T. Riedrich, N. Koksch (Eds.), International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Technische Universit¨at, Dresden, 1992: 185–192.

[10] Li Y. R., Guo B. L., Random attractors of Boussinesq equations with multiplicative noise, Acta Mathematica Sinica, English Series, 2009, 25(3): 481–490.

[11] Crauel H., Debussche A., Flandoli F., Random attractors, J. Dyna. Diff. Equ., 1997, 9(2): 307–341.

[12] Arnold L., Random Dynamical System, Springer-Verlag, Berling, 1998.

[13] Brzezniak Z., Li Y. H., Asymptotic compactness and absorbing sets for 2D stochastic Navier–Stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 2006, 358(12): 5587–5629.

[14] Canaballo T., Langa J. A., Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Disc. Contin. Dyn. Syst., 2000, 6(4): 875–892.

[15] Li J., Li Y. R., Wang B., Random attractors of reaction-diffusion equations with multiplicative noise in Lp, Appl. Math. Compu., 2010, 215(9): 3399–3407.

[16] Kloeden P. E., Langa J. A., Flattening, squeezing and the existence of random attractors, Proc. Roy. Soc. Lond. Ser. A, 2007, 463(2077): 163–181.

[17] Li Y. R., Guo B. L., Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Diff. Equ., 2008, 245(7): 1775–1800.

[18] Wang G. L., Guo B. L., Li Y. R., The asymptotic behavior of the stochastic Ginzburg-Landou equation with additive noise, Appl. Math. Compu., 2008, 198(2): 849–857.

[19] Ma L., Zhao L., Uniqueness of ground states of some coupled nonlinear Schr¨odinger systems and their application, J. Diff. Equ., 2008, 245(9): 2551–2565.

[20] Weinstein M. I., Nonlinear Schröinger equations and sharp interpolation estimates, Commun. Math. Phys., 1983, 87(4): 567–576.

[21] Deimling K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

基金

国家自然科学基金资助项目(11071199);重庆市教委科技资助项目(KJ120703);重庆市科委自然科学基金项目(cstc2012jjA00032);重庆工商大学博士启动基金项目(2012-56-09)

PDF(535 KB)

278

Accesses

0

Citation

Detail

段落导航
相关文章

/