连续g-框架的刻画

肖祥春, 曾晓明

数学学报 ›› 2012, Vol. 55 ›› Issue (6) : 1131-1144.

PDF(502 KB)
PDF(502 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (6) : 1131-1144. DOI: 10.12386/A2012sxxb0109
论文

连续g-框架的刻画

    肖祥春1, 曾晓明2
作者信息 +

Characterizations of Continuous g-Frames

    Xiang Chun XIAO1, Xiao Ming ZENG2
Author information +
文章历史 +

摘要

用合成算子和两个连续g-Bessel序列的有界线性算子L去刻画连续g-框架和连续g-Riesz基; 也从一个给定连续g-框架去构造新的连续g-框架,证明了在合适的条件下在一个给定连续g-框架的基础上去掉某些元素后剩余的部分还能构成连续g-框架.

Abstract

We characterize the continuous g-frames and the continuous g-Riesz basis by the synthesis operator and a bounded operator L associated with two continuous g-Bessel sequences; we also construct new continuous g-frames from a given continuous g-frame. Finally we show that, under some proper conditions, the remainder of some given continuous g-frame by deleting some elements can also be a continuous g-frame.

关键词

连续g-框架 / 连续g-Riesz基 / 可测 / 冗余

Key words

continuous g-frame / continuous g-Riesz basis / measurable / excess

引用本文

导出引用
肖祥春, 曾晓明. 连续g-框架的刻画. 数学学报, 2012, 55(6): 1131-1144 https://doi.org/10.12386/A2012sxxb0109
Xiang Chun XIAO, Xiao Ming ZENG. Characterizations of Continuous g-Frames. Acta Mathematica Sinica, Chinese Series, 2012, 55(6): 1131-1144 https://doi.org/10.12386/A2012sxxb0109

参考文献

[1] Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72: 341-366.
[2] Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27:1271-1283.
[3] Ferreira P. J. S. G., Mathematics for multimedia signal processing II: Discrete finite frames and signalreconstruction, in: J.S. Byrnes (Ed.), Signal processing for Multimedia, IOS Press, 1999, 35-54.
[4] Benedetto J. J., Heller W., Irregular sampling and theory of frames, I, Note Mat. X., 1990, 103-125, Suppl.n.1.
[5] Dudey Ward N. E., Partington J. R., A construction of rational wavelets and frames in Hardy-Sobolev spacewith applications to system modelling, SIAM J. Control Optim., 1998, 36: 654-679.
[6] Eldar Y., Forney Jr G. D., Optimal tight frames and quantum measurement, IEEE Trans. Inform. Theory,2002, 48: 599-610.
[7] Chan R. H., Riemenschneider S. D., Shen L., et al., Tight frame: An efficient way for high-resolution imagereconstruction, Appl. Comput. Harmon. Anal., 2004, 17: 91-115.
[8] Holmes R. B., Paulsen V. I., Optimal frames for erasures, Linear Algebra Appl., 2004, 377: 31-51.
[9] Strohmer T., Heath Jr R., Grassmanian frames with applications to coding and communications, Appl.Comput. Harmon. Anal., 2003, 14: 257-275.
[10] Casazza P. G., The art of frame theory, Taiwanese J. Math., 2000, 4(2): 129-201.
[11] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
[12] Kaiser G., A Friendly Guide to Wavelets, Birkhäuser, Boston, 1994.
[13] Ali S. T., Antoine J. P., Gazeau J. P., Coherent States, Wavelets and their Generalizatons, Springer-Verlag,New York, 2000.
[14] Ali S. T., Antoine J. P., Gazeau J. P., Continuous frames in Hilbert spaces, Ann. Phy., 1993, 222: 1-37.
[15] Grossmann A., Morlet J., Paul T., Transforms associated to square integrable group representation, Π,Examples, Ann. Inst. H. Poincaré, 1986, 25: 293-309.
[16] Gröchenig K., Foudations of Time-Frequency Analysis, Birkhäuser-Verlag, Boston, 2001.
[17] Askari-hemmat A., Dehghan M. A., Radjabalipour M., Generalized frames and their redundancy, Proc.Amer. Math. Soc., 2000, 129: 1143-1147.
[18] Dehghan M. A., Hasankhani Fard M. A., G-continuous frames and coorbit spaces, Acta MathematicaAcademiae Paedagogicae Nyíregyháziensis, 2008, 24: 373-383.
[19] Fornasier M., Rauhut H., Continuous frames, function spaces, and the discretizaton problem, J. Fourier.Anal. Appl., 2005, 11(3): 245-287.
[20] Gabardo J. P., Han D., Frames associated with measurable spaces, Adv. Comput. Math., 2003, 18: 127-147.
[21] Rahimi A., Najati A., Dehghan Y. N., Continuous frames in Hlibert spaces, Method Func. Anal. Topo., 2006,12: 170-182.
[22] Sun W. C., G-frames and g-Riesz bases, J. Math. Anal. Appl., 2006, 322: 437-452.
[23] Li J. Z., Zhu Y. C., Exact g-frames in Hilbert spaces, J. Math. Anal. Appl., 2011, 374: 201-209.
[24] Sun W. C., Stability of g-frames, J. Math. Anal. Appl., 2007, 326: 858-868.
[25] Wang Y. J., Zhu Y. C., G-frames and g-frame sequences in Hilbert spaces, Acta Mathematica Sinica, EnglishSeries, 2009, 25(12): 2093-2106.
[26] Xiao X. C., Zeng X. M., Some properties of g-frames in Hilbert C*-modules, J. Math. Anal. Appl., 2010,363: 399-408.
[27] Xiao X. C., Zhu Y. C., Zeng X. M., Generalized p-frame in separable complex Banach spaces, Int. J. WaveletsMultiresolut. Inf. Process, 2010, 8: 133-148.
[28] Ding G. G., An Introduction to Banach Spaces, Science Press, Beijing, 1984 (in Chinese).
[29] Abdollahpour M. R., Faroughi M. H., Continuous g-frames in Hilbert spaces, Southeast Asian Bull. Math.,2008, 32: 1-19.
[30] Rudin W., Functional Analysis, Second ed., McGraw-Hill, New York, 1991.

基金

国家自然科学基金资助项目(61170324);福建省自然科学基金资助项目(2012J01005);福州大学科研启动项目(022410)及福州大学科技发展基金项目(2012-XQ-29)
PDF(502 KB)

183

Accesses

0

Citation

Detail

段落导航
相关文章

/