Rademacher级数水平集的Hausdorff维数

刘春苔

数学学报 ›› 2012, Vol. 55 ›› Issue (6) : 1013-1018.

PDF(440 KB)
PDF(440 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (6) : 1013-1018. DOI: 10.12386/A2012sxxb0097
论文

Rademacher级数水平集的Hausdorff维数

    刘春苔1,2
作者信息 +

The Hausdorff Dimension of Level Sets of Rademacher Series

    Chun Tai LIU1,2
Author information +
文章历史 +

摘要

La,b是由实数列{an}诱导的Rademacher级数的水平集, 其级数部分和的上极限为b, 下极限为a.本文利用自然数密度和符号空间上的局部Holder连续性, 证明了当数列{an}通项趋于零且不属于l1时, 水平集La,b的Hausdorff维数为1.

Abstract

Let La,b be the level set of Redemacher series, being induced by a real sequence {an}, for which the upper limit of the part summation is b and the lower limit is a. By the tools named the density of natural numbers and local Holder continuity in the symbol space, the author proved that the Hausdorff dimension of La,b is one if the sequence {an}n=1 doesn’t belong to l1 with the general term tending to zero.

关键词

Rademacher级数 / 上密度 / Hausdorff维数 / 水平集

Key words

Rademacher series / upper density / Hausdorff dimension / the level set

引用本文

导出引用
刘春苔. Rademacher级数水平集的Hausdorff维数. 数学学报, 2012, 55(6): 1013-1018 https://doi.org/10.12386/A2012sxxb0097
Chun Tai LIU. The Hausdorff Dimension of Level Sets of Rademacher Series. Acta Mathematica Sinica, Chinese Series, 2012, 55(6): 1013-1018 https://doi.org/10.12386/A2012sxxb0097

参考文献

[1] Hardy G. H., Weierstrass’s non-dierentiable function, Trans. Amer. Math. Soc., 1916, 17: 301-325.
[2] Mandelbrot B. B., Fractals: Form, Chance and Dimension, San Francisco, Freeman, 1977.
[3] Buczolich Z., Irregular 1-sets on the graphs of continuous functions, Acta. Math. Hungar, 2008, 121: 371-393.
[4] Falconer K. J., Fractal Geometry, Mathematical Foundations and Applications, Springer-Verlag, New York,1990.
[5] Fan A. H., A refinement of an ergodic theorem and its application to Hardy functions, C. R. Acad. SciParist, Série I, 1997, 325: 145-150.
[9] Hu T. Y., Lau K. S., The sum of Rademacher functions and Hausdorff dimension, Math. Proc. Camb. Phil.Soc., 1990, 108: 97-103.
[7] Kaczmarz S., Steinhaus H., Le systeme orthorgonal, de. M. Rademacher. Studia Mathematica, 1930, 2:231-247.
[8] Kaplan J. L., Mallet-Paret J., Yorke J. A., The Lyapunov dimension of a nowhere differentiable attractingtorus, Ergod. Th. Dynam. Sys., 1984, 4: 261-281.
[9] Hu T. Y., Lau K. S., The sum of Rademacher functions and Hausdorff dimension, Math. Proc. Camb. Phil.Soc., 1990, 108: 97-103.
[10] Shiota Y., Sekiguchi T., Hausdorff dimension of graphs of some Rademacher series, Japan J. Appl. Math.,1990, 7: 121-129.
[11] Trollope J. R., An explicit expression for binary digital sums, Math. Mag., 1968, 41: 21-25.
[12] Beyer W. A., Hausdorff dimension of level sets of some Redemacher series, Pacific J. Math., 1962, 12: 35-46.
[13] Wu J., Dimension of level sets of some Redemacher series, C. R. Acad. sci. Paris, Série I, 1998, 327: 29-33.
[14] Xi L. F., Hausdorff dimensions of level sets of Rademacher series, C. R. Acad. Sci. Paris, Série I, 2000, 331:953-958.
[15] Fan A. H., Individual behaviors of oriented walks, Stochastic Process Appl., 2000, 90(2): 263-275.

基金

华中师范大学中央高校基本科研业务费项目(CCNU11A01028)
PDF(440 KB)

237

Accesses

0

Citation

Detail

段落导航
相关文章

/