非双倍测度空间上的Toeplitz算子

徐景实, 周放军

数学学报 ›› 2012, Vol. 55 ›› Issue (6) : 1001-1012.

PDF(353 KB)
PDF(353 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (6) : 1001-1012. DOI: 10.12386/A2012sxxb0096
论文

非双倍测度空间上的Toeplitz算子

    徐景实, 周放军
作者信息 +

Toeplitz Operators on Spaces with Non-Doubling Measure

    Jing Shi XU, Fang Jun ZHOU
Author information +
文章历史 +

摘要

μ是Rd上满足一定增长条件的Radon测度,则由 Calderón-Zygmund算子和RBMO(μ)函数生成的算子在带有测度μ的Lebesgue和Morrey空间上有界.

Abstract

Let μ be a Radon measure on Rd satisfying a certain growth condition. Then Toeplitz operators generated by Calderón-Zygmund operators and RBMO(μ) functions are bounded on Lebesgue spaces and Morrey spaces with measure μ.

关键词

Toeplitz算子 / Calderón-Zygmund算子 / Lebesgue空间

Key words

Toeplitz operator / Calderón-Zygmund operator / Lebesgue space

引用本文

导出引用
徐景实, 周放军. 非双倍测度空间上的Toeplitz算子. 数学学报, 2012, 55(6): 1001-1012 https://doi.org/10.12386/A2012sxxb0096
Jing Shi XU, Fang Jun ZHOU. Toeplitz Operators on Spaces with Non-Doubling Measure. Acta Mathematica Sinica, Chinese Series, 2012, 55(6): 1001-1012 https://doi.org/10.12386/A2012sxxb0096

参考文献

[1] Krantz S., Li S., Boundedness and compactness of integral operators on spaces of homogeneous type andapplications, J. Math. Anal. Appl., 2001, 258(2): 629-641.
[2] Alvarez J., Milman M., Hp continuity properties of Calderón-Zygmund-type operators, J. Math. Anal. Appl.,1986, 118(1): 63-79.
[3] Lin Y., Lu S., Toeplitz operators related to strongly singular Calderón-Zygmund operators, Sci. in China,Ser. A Math., 2006, 49(8): 1048-1064.
[4] Chen W., Sawyer E. T., A note on commutators of fractional integrals with RBMO(μ) functions, IllinoisMath. J., 2002, 46(4): 1287-1298.
[5] Garcla-Cuerva J., Gatto A. E., Lipschitz spaces and Calderón-Zygmund operators associated to non-doublingmeasures, Publ. Mat., 2005, 49(2): 285-296.
[6] Hu G., Meng Y., Yang D., Multilinear commutators of singular integrals with non doubling measures, Integr.Equ. Oper. Theory, 2005, 51(2): 235-255.
[7] Hu G., Meng Y., Yang D., Multilinear commutators for fractional intrgrals in non-homogeneous spaces, Publ.Mat., 2004, 48: 335-367.
[8] Meng Y., Multilinear Calderón-Zygmund operators on the product of Lebesgue spaces with non-doublingmeasures, J. Math. Anal. Appl., 2007, 335(1): 314-331.
[9] Meng Y.,Yang D., Boundedness of commutators with Lipschitz functions in non-homogeneous spaces, TaiwaneseJ. Math., 2006, 10(6): 1443-1464.
[10] Lian J., Wu H., A class of commutators for multilinear fractional integrals in nonhomogeneous spaces, J.Ineq. Appl., 2008, 2008, Article ID 373050, 17 pages, doi:10.1155/2008/373050.
[11] Lin H., Meng Y., Yang D., Weighted estimates for commutators of multilinear Calderón-Zygmund operatorswith non-doubling measures, Acta Math. Sci., 2010, 30(1): 1-18.
[12] Nazarov F., Treil S., Volberg A., Cauchy integral and Calderón-Zygmund operators on nonhomogeneousspaces, Internat. Math. Res. Notices, 1997, 1997: 703-726.
[13] Nazarov F., Treil S., Volberg A., Weak type estimates and Cotlar inequalities for Calderón-Zygmund operatorson nonhomogeneous spaces, Internat. Math. Res. Notices, 1998, 1998: 463-487.
[14] Nazarov F., Treil S., Volberg A., The Tb-theorems on nonhomogeneous spaces, Acta Math., 2003, 190(1):151-239.
[15] Qiu D., Some of integral operators on space of homegeneous type, Chinese Ann. Math., Series A in Chinese,2001, 22(6): 797-804.
[16] Sawano Y., Tanaka H., Morrey spaces for non-doubling measures, Acta Mathematica Sinica, English Series,2005, 21(6): 1535-1544.
[17] Sawano Y., Tanaka H., Sharp maximal inequalities and commutators on Morrey spaces with non-doublingmeasures, Taiwanese. J. Math., 2007, 11(4): 1091-1112.
[18] Tolsa X., BMO, H1 and Calderón-Zygmund operators for non doubling measures, Math. Ann., 2001, 319(1):89-149.
[19] Tolsa X., Littlewood-Paley theory and the T(1) theorem with non-doubling measures, Adv. Math., 2001,164(1): 57-116.
[20] Tolsa X., A proof of the weak (1, 1) inequality for singular integrals with non doubling measures based ona Calderón-Zygmund decomposition, Publ. Mat., 2001, 45(1): 163-174.
[21] Xu J., Boundedness of multilinear singular integrals for non-doubling measures, J. Math. Anal. Appl., 2007,327(1): 471-480.
[22] Xu J., Boundedness in Lebesgue spaces for commutators of multilinear singular integrals and RBMO functionswith non doubling measures, Sci. in China, Ser. A Math., 2007, 50(3): 361-376.

基金

国家自然科学基金资助项目(11071064);海南省自然科学基金资助项目(111006)
PDF(353 KB)

Accesses

Citation

Detail

段落导航
相关文章

/