设A为交换变元x1, x2的罗朗多项式代数, 记A的导子代数Der, A为M.本文确定了A, M的对合自同构.利用M的对合自同构给出了一类无限维单李三系, 并且通过讨论M的自同构与对合自同构的关系, 确定这些单李三系的自同构.
Abstract
Let A be the Laurent polynomial algebra in commutative variables x1,x2. Denote the derivation algebra Der A of A by M.In this paper,we determine the involution automorphisms of A,M.We use the involution automorphisms of M to construct some infinitely Diffensional simple Lie triple systems.The automorphisms of these simple Lie triple systems are also determined by discussing the relationships between the automorphisms and the involution automorphisms of M.
关键词
罗朗多项式代数 /
李三系 /
自同构
{{custom_keyword}} /
Key words
Laurent polynomial algebra /
Lie triple system /
automorphism
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Jacobson N.,Lie and Jordan triple systems,Amer.J.Math.,1949,71:149-170.
[2] Lister W.G.,A structure theory of Lie triple systems,Trans.Amer.Math.Soc.,1952,72:217-242.
[3] Faulkner J.,Structurable triples,Lie triples and symmetric spaces,Forum Math.,1994,6:637-650.
[4] Hopkins N.C.,Simplicity of Lie module triple systems,Comm.Algebra,1991,19:2231-2237.
[5] Terrell H.L.,Prashall B.J.,On the representation theory of Lie triple systems,Trans.Amer.Math.Soc., 2002,354(11):4359-4391.
[6] Shi Y.Q.,Meng D.J.,On derivations and automorphism group of Lie triple systems,Journal of Nankai University:Natural Science,2002,35(2):32-37.
[7] Zhang H.G.,Isomorphism Theorems of Lie Triple Systems,Graduate Dissertation of Hebei University, Shijiazhuang,2005.
[8] Shi Y.Q.,Meng D.J.,Lie triple systems associated with Laurent-polynomial algebra F[t,t1],Annals of Mathematics in Chinese,2005,26A(5):651-658.
[9] Park H.G.,Lee J.,Choi S.H.,Chen X.Q.,Nam K.B.,Automorphism groups of some algebras,Science China Math.,2009,52(2):323-328.
[10] Berman S.,Gao Y.,Krylyuk Y.S.,Quantum tori and the structure of elliptic quasi-simple Lie algebras,J. Funct.Anal.,1996,135:339-389.
[11] Ramos E.,Sah C.H.,Shrock R.E.,Algebras of Diffeomorphisms of the N-torus,J.Math.Phys.,1990,31(8): 1805-1816.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(11171202);湖南省教育厅一般资助项目(10C1260)
{{custom_fund}}