(K1,K2)-拟正则映射的Hölder连续性和几乎处处可微性

高红亚, 刘超, 李军伟

数学学报 ›› 2012, Vol. 55 ›› Issue (4) : 721-726.

PDF(433 KB)
PDF(433 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (4) : 721-726. DOI: 10.12386/A2012sxxb0069
论文

(K1,K2)-拟正则映射的Hölder连续性和几乎处处可微性

    高红亚1, 刘超1, 李军伟2
作者信息 +

Hölder Continuity and Differentiability Almost Everywhere of (K1,K2)-Quasiregular Mappings

    Hong Ya GAO1, Chao LIU1, Jun Wei LI2
Author information +
文章历史 +

摘要

考虑(K1,K2)-拟正则映射. 利用Morrey引理和等周不等式,证明了在其定义域中的任意紧子集上,每个(K1,K2)-拟正则映射都满足具有指数α的Hölder条件,这里  本文也得到了(K1,K2)-拟正则映射的几乎处处可微性.

Abstract

We deal with (K1,K2)-quasiregular mappings. It is shown, by Morrey’s Lemma and isoperimetric inequality, that every (K1,K2)-quasiregular mapping satisfies a Hölder condition with exponent α on compact subsets of its domain, where  Differentiability almost everywhere of (K1,K2)-quasiregular mappings is also derived. Keywords (K1,K2)-quasiregular mapping; Hölder continuity; differentiability almost everywhere; Morrey’s lemma

关键词

(K1,K2)-拟正则映射 / / lder连续性 / 几乎处处可微性 / O21Morrey引理

Key words

(K1,K2)-quasiregular mapping / / lder continuity / differentiability almost everywhere / Morrey’s lemma

引用本文

导出引用
高红亚, 刘超, 李军伟. (K1,K2)-拟正则映射的Hölder连续性和几乎处处可微性. 数学学报, 2012, 55(4): 721-726 https://doi.org/10.12386/A2012sxxb0069
Hong Ya GAO, Chao LIU, Jun Wei LI. Hölder Continuity and Differentiability Almost Everywhere of (K1,K2)-Quasiregular Mappings. Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 721-726 https://doi.org/10.12386/A2012sxxb0069

参考文献

[1] Zheng S. Z., Fang A. N., Lp-integrability of (K1,K2)-quasiregular mappings, Acta Mathematica Sinica,Chinese Series, 1998, 41(5): 1019-1024.

[2] Kreines M., Sur une calsse de fonctions de plusierus variables, Mat. Sb., 1941, 51(9): 713-720.

[3] Reshetnyak Yu. G., On a sufficient condition for Hölder continuity of a mapping, Dokl. Akad. Nauk SSSR,1960, 130: 507-509.

[4] Reshetnyak Yu. G., Estimates of the modulus of continuity for certain mappings, Sibirsk Math. Zh., 1966,7: 1106-1114.

[5] Callender E. D., Hölder continuity of n-dimensional quasiconformal mappings, Pacific J. Math., 1960, 10:499-515.

[6] Simon L., A Hölder estimate for quasiconformal maps between surfaces in Euclidean space, Acta Math.,1977, 139: 19-51.

[7] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin,1983.

[8] Iwaniec T., Martin G., Geometric Function and Non-linear Analysis, Clarendon Press, Oxford, 2001.

[9] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer-Verlag, Berlin,2008.

[10] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings inthe Plane, Princeton University Press, Princeton, 2009.

[11] Gao H. Y., Regularity for weakly (K1,K2)-quasiregular mappings, Sci. China, Ser. A, 2003, 46(4): 499-505.

[12] Gao H. Y., Huang Q. H., Qian F., Regularity for weakly (K1,K2(x))-quasiregular mappings of severaln-dimensional variables, Front. Math. China, 2011, 6(2): 241-251.

[13] Gao H. Y., Zhou S. Q., Meng Y. Q., A new inequality for weakly (K1,K2)-quasiregular mappings, ActaMathematica Sinica, English Series, 2007, 23(12): 2241-2246.

[14] Gao H. Y., Li T., On degenerate weakly (K1,K2)-quasiregular mappings, Acta Math. Sci., 2008, 28B(1):163-170.

[15] Gao H. Y., Liu H. H., Zhou S. Q., Higher integrablity for weakly (K1,K2(x))-quasiregular mappings, ActaMathematica Sinica, Chinese Series, 2009, 52(5): 847-852.

[16] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Trans. Math. Monographs, 73, Amer. Math.Soc., Provindence R. I., 1989.

[17] Morrey C. B., Multiple integral problems in the calculus of variations and related topics, Univ. CaliforniaPubl. Math. (N.S.), 1943, 1: 1-130.

基金

国家自然科学基金资助项目(10971224);河北省自然科学基金资助项目(A2011201011)

PDF(433 KB)

225

Accesses

0

Citation

Detail

段落导航
相关文章

/