二次算子族及非负无穷维Hamilton算子的谱分布

邢利刚, 阿拉坦仓

数学学报 ›› 2012, Vol. 55 ›› Issue (4) : 665-672.

PDF(421 KB)
PDF(421 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (4) : 665-672. DOI: 10.12386/A2012sxxb0063
论文

二次算子族及非负无穷维Hamilton算子的谱分布

    邢利刚1,2, 阿拉坦仓1
作者信息 +

The Scatter of Spectrum of Quadratic Operator Pencil and Nonnegative Infinite Dimensional Hamiltonian Operator

    Li Gang XING1,2, Alatancang1
Author information +
文章历史 +

摘要

本文讨论了一类在弦和梁的微小振动中出现的二次算子族L(λ)=λ2M-iλK-A的谱分布问题, 进而将所得结论与无穷维Hamilton 算子联系起来,利用无穷维Hamilton 算子的特殊结构,得到了一类非负无穷维Hamilton算子的谱分布, 这为无穷维Hamilton 算子的半群方法提供了理论保证.

Abstract

In this paper, we discuss the spectrum of a class quadratic operator pencils which appears in vibrations of strings and beams. Meanwhile, we gained the spectrum of the infinite-dimensional Hamiltonian operators making use of these conclusions to the infinite-dimensional Hamiltonian operators and considering the special structure of infinite-dimensional Hamiltonian operators. This provides us with theoretical guarantee to discuss the method of semi-group to the infinite-dimensional Hamiltonian operators.

关键词

无穷维Hamilton 算子 / 二次算子族 /

Key words

infinite-dimensional Hamiltonian operators / quadratic operator pencils / spectrum

引用本文

导出引用
邢利刚, 阿拉坦仓. 二次算子族及非负无穷维Hamilton算子的谱分布. 数学学报, 2012, 55(4): 665-672 https://doi.org/10.12386/A2012sxxb0063
Li Gang XING, Alatancang. The Scatter of Spectrum of Quadratic Operator Pencil and Nonnegative Infinite Dimensional Hamiltonian Operator. Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 665-672 https://doi.org/10.12386/A2012sxxb0063

参考文献

[1] Alatancang, Zhang H. Q., Zhong W. X., Pesodu-division algorithm for matrix multi-variable polynomial andits application, Applied Mathematics and Mechani, 2000, 21(7): 733-740.
[2] Alatancang, Huang J. J., The scatter of spectrum of a classes of infinite-dimensional Hamiltonian operator,Journal of Dalian University of Technology, 2004, 44(3): 326-329 (in Chinese).
[3] Huang J. J., Alatancang, Fan X. Y., Structure of the spectrum of infinite dimensional Hamiltonian operators,Sci. China Ser. A, Math., 2008, 38(1): 71-78 (in Chinese).
[4] Hou G. L., Alatancang, Spectrum of a classes of infinite dimensional Hamiltonian operators, Journal of InnerMongolia University, 2007, 38(3): 247-251 (in Chinese).
[5] Wu D. Y., Alatancang, Completeness in the sense of Cauchy principle value of the eigenfunction systems ofinfinite dimensional Hamiltonian operator, Sci. China Ser. A, Math., 2008, 38(8): 904-912 (in Chinese).
[6] Pivovarchik V. N., On Spectrum of A certain class of Quadratic operator pencils with one-dimensional linearpart, Ukrainian Mathematical Journal, 2007, 59(5): 766-781.
[7] Kato Dr. T., Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
[8] Sun J., Wang Z., Spectrum Analysis of Linear Operator, Science Press, Beijing, 2005 (in Chinese).

基金

国家自然科学基金资助项目(10962004)
PDF(421 KB)

Accesses

Citation

Detail

段落导航
相关文章

/