变指数Herz-Besov-Triebel空间的刻画

史春娥, 徐景实

数学学报 ›› 2012, Vol. 55 ›› Issue (4) : 653-664.

PDF(526 KB)
PDF(526 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (4) : 653-664. DOI: 10.12386/A2012sxxb0062
论文

变指数Herz-Besov-Triebel空间的刻画

    史春娥, 徐景实
作者信息 +

A Characterization of Herz-Besov-Triebel Spaces with Variable Exponent

    Chun E SHI, Jing Shi XU
Author information +
文章历史 +

摘要

建立了变指数的Herz型Besov和Triebel-Lizorkin空间的离散刻画并利用此刻画得到了拟微分算子在这些空间上的有界性.

Abstract

A discrete characterization of Herz type Besov and Triebel-Lizorkin spaces with variable exponent is established. Based on this result the boundedness of pseudodifferential operators on these spaces is obtained.

关键词

变指数 / Herz空间 / 拟微分算子

Key words

variable exponent / Herz space / pseudo-differential operator

引用本文

导出引用
史春娥, 徐景实. 变指数Herz-Besov-Triebel空间的刻画. 数学学报, 2012, 55(4): 653-664 https://doi.org/10.12386/A2012sxxb0062
Chun E SHI, Jing Shi XU. A Characterization of Herz-Besov-Triebel Spaces with Variable Exponent. Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 653-664 https://doi.org/10.12386/A2012sxxb0062

参考文献

[1] Orlicz W., Über konjugierte Exponentenfolgen, Studia Math., 1931, 3(3): 200-212.
[2] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin,1983.
[3] Kováčik O., Rákosník J., On spaces Lp(x) and Wk,p(x), Czech. Math. J., 1991, 41(4): 592-681.
[4] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics,1748, Springer-Verlag, Berlin, 2000.
[5] Harjulehto P., Hästö P., Le U. V., Nuortio M., Overview of differential equations with non-standard growth,Nonl. Anal., 2010, 72(12): 4551-4574.
[6] Schneider R., Reichmann O., Schwab C., Wavelet solution of variable order pseudodifferential equations,Calcolo, 2010, 47(1): 65-101.
[7] Chen Y., Levine S., Rao R., Variable exponent, linear growth functionals in image restoration, SIAM J.Appl. Math., 2006, 66(4): 1383-1406.
[8] Li F., Li Zh. B., Pi L., Variable exponent functionals in image restoration, Appl. Math. Comp., 2010, 216(3):870-882.
[9] Diening L., Harjulehto P., Hästö P., Růžička M., Lebesgue and Sobolev Spaces with Variable Exponents,Lecture Notes in Mathematics 2017, Springer-Verlag, Berlin, 2011.
[10] Almeida A., Höstö P., Besov spaces with variable smoothness and integrability, J. Funct. Anal., 2010, 258(5):1628-1655.
[11] Diening L., Hästö P., Roudenko S., Function spaces of variable smoothness and integrablity, J. Funct. Anal.,2009, 256(6): 1731-1768.
[12] Kempka H., 2-Microlocal Besov and Triebel-Lizorkin spaces of variable integrability, Rev. Mat. Complut.,2009, 22(1): 227-25.
[13] Kempka H., Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces. J. Funct.Spaces Appl., 2010, 8(2): 129-165.
[14] Xu J., The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces, Integ. Trans. Spec.Funct., 2008, 19(8): 599-605.
[15] Xu J., Variable Besov spaces and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fen. Math., 2008, 33(2): 511-522.
[16] Xu J., An atomic decomposition of variable Besov and Triebel-Lizorkin spaces, Armenian J. Math., 2009,2(1): 1-12.
[17] Fan X. L., Variable exponent Morrey and Campanato spaces, Nonl. Anal., 2010, 72(11): 4148-4161.
[18] Baernstein A. II., Sawyer E. T., Embedding and multiplier theorems for Hp(Rn), Memoirs Amer. Math.Soc., 1985, 53(318): 1-82.
[19] Lu S. Z., Multipliers and Herz type spaces, Sci. China Series A, Math., 2008, 51(10): 1919-1936.
[20] Lu S. Z., Yang D., Hu G., Herz Type Spaces and Their Applications, Science Press, Beijing, 2008.
[21] Xu J., A discrete characterization of the Herz-type Triebel-Lizorkin spaces and its applications, Acta Math.Sci., 2004, 24B(3): 412-420.
[22] Xu J., Equivalent norms of Herz type Besov and Triebel-Lizorkin spaces, J. Funct. Spaces Appl., 2005, 3(1):17-31.
[23] Xu J., Yang D., Applications of Herz-type Triebel-Lizorkin spaces, Acta Math. Sci., 2003, 23B(3): 328-338.
[24] Xu J., Yang D., Herz-type Triebel-Lizorkin spaces (I), Acta Mathematica Sinica, English Series, 2005,21(3): 643-654.
[25] Xu J., An admissibility for topological degree of Herz-type Besov and Triebel-Lizorkin spaces, Topol. MethodsNonl. Anal., 2009, 33(2): 327-334.
[26] Dintelmann P., On the boundness of pseudo-differential operators on the weight Besov-Lizorkin-Triebelspaces, Math. Nachr., 1997, 183(1): 43-53.
[27] Izuki M., Boundedness of sublinear operators on Herz spaces with variable exponent and application towavelet characterization, Anal. Math., 2010, 36(1): 33-50.
[28] Izuki M., Boundedness of commutators on Herz spaces with variable exponent, Rendiconti del Circolo Matematicodi Palermo, 2010, 59(2): 199-213.
[29] Izuki M., Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variableexponent, Glasnik Matematicki, 2010, 45(2): 475-503.
[30] Shi C., Xu J., Herz type Besov and Triebel-Lizorkin spaces with variable exponent, submitted.
[31] Dintelmann P., Class of Fourier multipliers and Besov-Nikolskij spaces, Nachr. Math., 1995, 173(1): 115-130.
[32] Hörmander L., The Analysis of Linear Partial Differential Operators, Vol. III, Springer-Verlag, Berlin, 1985.
[33] Torres R. H., Boundness results for operators with singular kernels on distribution spaces, Mem. Amer.Math. Soc., 1991, 90(442).
[34] Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983.

基金

国家自然科学基金资助项目(11071064);海南省自然科学基金资助项目(111006)
PDF(526 KB)

210

Accesses

0

Citation

Detail

段落导航
相关文章

/