第一类典型域上的Bloch常数

王建飞, 刘太顺

数学学报 ›› 2012, Vol. 55 ›› Issue (1) : 27-40.

PDF(542 KB)
PDF(542 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (1) : 27-40. DOI: 10.12386/A2012sxxb0003
论文

第一类典型域上的Bloch常数

    王建飞1, 刘太顺2
作者信息 +

Bloch Constant on Classical Domain of the First Type

    Jian Fei WANG1, Tai Shun LIU2
Author information +
文章历史 +

摘要

引入第一类典型域RI(m,n)上的全纯映照子族Hk(RI(m,n)),当k→ +∞时,该映照族就是RI(m,n)上的局部双全纯映照族.建立了Hk(RI(m,n))上的Bonk偏差定理.当k=1和k→ +∞时,其结果分别都回到了FitzGerad和龚升关于典型域RI(m,n)上的Bonk偏差定理.当m=n=1时, 其结果又回到了Liu和Minda在单位圆盘上的偏差定理.应用偏差定理,给出了映照族Hk(RI(m,n))上的Bloch常数估计,其结果补全了从k=1和k→ +∞之间的RI(m,n)上Bloch常数估计的所有结果,而且把单位球上的Bloch常数估计推广到RI(m,n)上.  

Abstract

In this paper, various subfamilies Hk(RI(m,n))of holomorphic mappings defined in the first classical domain RI(m,n)are introduced. When k tends to +∞, this family reduces to the class of locally biholomorphic mappings on RI(m,n). We establish the Bonk distortion theorems for Hk(RI(m,n)). In particular, when k = 1 and k → +∞, the theorems reduce to that of Fitzgerald and Gong, respectively. When m = n = 1, this distortion theorem coincides with Liu and Minda as the unit disk case. As applications of the Bonk distortion theorems, various estimates of Bloch constants for these subfamilies of holomorphic mappings on RI(m,n)are obtained. We not only give all Bloch estimates of holomorphic mappings between 1 < k < +∞ defined in RI(m,n), but also extend our early Bloch constant estimates of the unit ball to the classical domain of the first type RI(m,n).  

关键词

典型域 / 全纯映照 / 偏差定理 / Bloch常数

Key words

classical domain / holomorphic mapping / distortion theorem / Bloch constant

引用本文

导出引用
王建飞, 刘太顺. 第一类典型域上的Bloch常数. 数学学报, 2012, 55(1): 27-40 https://doi.org/10.12386/A2012sxxb0003
Jian Fei WANG, Tai Shun LIU. Bloch Constant on Classical Domain of the First Type. Acta Mathematica Sinica, Chinese Series, 2012, 55(1): 27-40 https://doi.org/10.12386/A2012sxxb0003

参考文献

[1] Bloch A., Les théorèmes de M. Valiron sur les functions entières et la théorie de l'uniformisation, Ann. Fac. Sci. Univ. Toulouse, 1925, 17: 1-22.



[2] Ahlfors L. V., An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 1938, 43: 359-364.



[3] Heins M., On a class of conform metrics, Nagoya Math. J., 1962, 21: 1-60.



[4] Bonk M., On Bloch's constant, Proc. Amer. Math. Soc., 1990, 110: 889-894.



[5] Liu X. Y., Bloch functions of several complex variables, Pacific J. Math., 1992, 152: 347-363.



[6] FitzGerald C. H., Gong S., The Bloch theorem in several complex variables, J. Geom. Anal., 1994, 4: 35-58.



[7] Liu X. Y., Minda D., Distortion theorems for Bloch functions, Trans. Amer. Math. Soc., 1992, 333: 325-338.



[8] Wang J. F., Liu T. S., Bloch constant of holomorphic mappings on the unit ball of Cn, Chin. Ann. Math., 2007, 28B: 667-684.



[9] Yan Z. M., Gong S., Bloch constant of holomorphic mappings on bounded symmetric domains, Sci. China. Ser. A-Math., 1993, 36: 285-299.



[10] FitzGerald C. H., Gong S., The locally biholomorphic Bloch constant and Marden constant of several complex variables, Computational Methods and Function Theory, 1994, 5: 147-158.



[11] Wang J. F., Liu T. S., Bloch constant of holomorphic mappings on the unit polydisk of Cn, Sci. China. Ser. A-Math., 2008, 151: 777-784.



[12] Chen H., Gauthier P. M., On Bloch's constant, J. Anal. Math., 1996, 69: 275-291.



[13] Wu H., Normal families of holomorphic mappings, Acta Math., 1967, 119: 193-233.



[14] Harris L. A., On the size of balls covered by analytic transformations, Monatschefte für Mathematik, 1977, 83: 9-23.



[15] Bochner S., Bloch theorem for real variables, Bull. Amer. Math. Soc., 1946, 52: 715-719.



[16] Hahn K. T., High dimensional generalizations of the Bloch constant and their lower bounds, Trans. Amer. Math. Soc., 1973, 179: 263-274.



[17] Takahashi S., Univalent mappings in several complex variables, Ann. of Math., 1951, 53: 464-471.



[18] Hua L. K., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domain, Beijing: Science Press, 1958; Tran. of Math. Monographs, Vol. 6, Providence, RI: AMS, 1963.



[19] Gong S., Yu Q. H., Zheng X. A., Bloch Constant and Schwarzian Derivative, Shanghai: Shanghai Science and Technical Publishers, 1998(in Chinese).

基金

国家自然科学基金资助项目(10826083, 10971063, 11001246); 浙江省自然科学基金(D7080080, Y6090694, Y6110260, Y6110053); 浙江省创新团队资助项目(T200924, T200905)

PDF(542 KB)

278

Accesses

0

Citation

Detail

段落导航
相关文章

/