方向导数和广义锥-预不变凸集值优化问题

余国林

数学学报 ›› 2011, Vol. 54 ›› Issue (5) : 875-880.

PDF(386 KB)
PDF(386 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (5) : 875-880. DOI: 10.12386/A2011sxxb0088
论文

方向导数和广义锥-预不变凸集值优化问题

    余国林
作者信息 +

Directional Derivatives and Generalized Cone-Preinvex Set-Valued Optimization

    Guo Lin YU
Author information +
文章历史 +

摘要

讨论拓扑向量空间中无约束集值优化问题的最优性条件问题. 利用集值映射的Dini方向导数, 在广义锥-预不变凸性条件下, 建立了集值优化问题关于弱极小元和强极小元的最优性充分必要条件.  

Abstract

This note deals with the optimality conditions of set-valued unconstraint optimization problems in topological vector spaces. Based upon the concepts of Dini directional derivatives and generalized cone-preinvexity for the set-valued mappings, the necessary and sufficient optimality conditions are established for weak and strong minimizer respectively in set-valued optimization problems.  

关键词

集值优化 / 方向导数 / 广义锥-预不变凸集值映射 / 最优性条件

Key words

set-valued optimization / directional derivative / generalized cone-preinvex set-valued mapping

引用本文

导出引用
余国林. 方向导数和广义锥-预不变凸集值优化问题. 数学学报, 2011, 54(5): 875-880 https://doi.org/10.12386/A2011sxxb0088
Guo Lin YU. Directional Derivatives and Generalized Cone-Preinvex Set-Valued Optimization. Acta Mathematica Sinica, Chinese Series, 2011, 54(5): 875-880 https://doi.org/10.12386/A2011sxxb0088

参考文献

[1] Baier J., Jahn J., On subdifferentials of set-valued maps, Journal of Optimization Theory and Applications, 1980, 100: 233–240.

[2] Chen G. Y., Jahn J., Optimality conditions for set-valued optimization problems, Mathematical Methods of Operation Research, 1988, 48: 187–200.

[3] Corley H. W., Optimality conditions for maximizations of set-valued functions, Journal of Optimization Theory and Applications, 1988, 58: 1–10.

[4] Luc D. T., Contingent derivatives of set-valued maps and applications to vector optimization, Mathematical Programming, 1991, 50: 99–111.

[5] Jahn J., Rauh R., Contingent epiderivatives and set-va; ued optimzation, Mathematical Methods of Operation Research, 1997, 46: 193–211.

[6] Qiu J. H., Cone-directed contingent derivatives and generalized preinvex set-valued optimization, Acta Mathematica Scientia, 2007, 27B(1): 211–218.

[7] Yang X. Q., Directional derivatives for set-valued mappings and applications, Mathematical Methods of Operations Research, 1998, 48: 273–285.

[8] Bhatia D., Mehara A., Lagrangian duality for preinvex set-valued functions, Journal of Mathematical Analysis and Applications, 1997, 214: 599–612.

[9] Batista Dos Santos L., Osuna-G′omez R., Rojas-Medar M. A., Rufi′an-Lizana A., Preinvex functions and weak efficient solutions for some vectorial optimization problem in Banach spaces, Computers and Mathematics with Applications, 2004, 48: 885–895.

[10] Mishra S. K., Giorgi G., Wang S. Y., Duality in vector optimization in Banach spaces with generalized convexity, Journal of Global Optimization, 2004, 29: 415–424.

[11] Weir T., Jeyakumar V., A class of nonconvex functions and mathematical programming, Bulletin of Australian Mathematical Society, 1988, 38: 177–189.

[12] Weir T., Mond B., Preinvex functions in multiple-objective optimization, Journal of Mathematical Analysis and Applications, 1988, 136: 29–38.

[13] Yu G. L., Liu S. Y., Some vector optimization problems in Banach spaces with generalized convexity, Computers and Mathematics with Applications, 2007, 54: 1403–1410.

[14] Yu G. L., Liu S. Y., Globally proper saddle point in ic-cone-convexlike set-valued optimization problems, Acta Mathematica Sinica, English Series, 2009, 25(11): 1921–1928.

基金

国家自然科学基金资助项目(10901004); 北方民族大学自主科研基金项目(2011)

PDF(386 KB)

210

Accesses

0

Citation

Detail

段落导航
相关文章

/