恰有两个子群共轭类长的有限群

唐锋

数学学报 ›› 2011, Vol. 54 ›› Issue (4) : 619-622.

PDF(356 KB)
PDF(356 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (4) : 619-622. DOI: 10.12386/A2011sxxb0063
论文

恰有两个子群共轭类长的有限群

    唐锋
作者信息 +

Finite Groups with Exactly Two Conjugacy Class Sizes of Subgroups

    Feng TANG
Author information +
文章历史 +

摘要

G是有限群, Ns(G)表示G的子群共轭类长构成的集合. 本文研究Ns(G)中只有两个元素时有限群G的结构,在非幂零情形时给出了G的完全分类,在幂零情形时获得了G的一些性质.  

Abstract

Let G be a finite group and Ns(G) denote the set of conjugacy class sizes of all subgroups of G. The aim of this paper is to investigate the finite groups G with Ns(G) exactly having two elements. We classfy the groups for the nonnilpotent case, and also obtain some properties for the nilpotent case.  

关键词

有限群 / 子群共轭类长 / Dedekind群

Key words

finite group / conjugacy class size of subgroup / Dedekind group

引用本文

导出引用
唐锋. 恰有两个子群共轭类长的有限群. 数学学报, 2011, 54(4): 619-622 https://doi.org/10.12386/A2011sxxb0063
Feng TANG. Finite Groups with Exactly Two Conjugacy Class Sizes of Subgroups. Acta Mathematica Sinica, Chinese Series, 2011, 54(4): 619-622 https://doi.org/10.12386/A2011sxxb0063

参考文献

[1] Ito N., On finite groups with given conjugate types I, Nagoya Math., 1953, 6: 17-28.

[2] Liu X., Wang Y., Wei H., Notes on the length of conjugacy classes of finite groups, J. Pure and Applied Algebra, 2005, 196: 111-117.

[3] Zhang J., Sylow numbers of finite groups, J. Algebra, 1995, 176: 111-123.

[4] Guo W., Finite groups with given normalizers of Sylow subgroups II, Acta Mathematica Sinica, Chinese Series, 1996, 39(4): 509-513.

[5] Zhou X., On the orders of conjugacy classes of cyclic subgroups, Arch. Math., 1995, 65: 210-215.

[6] Liu Y., Zhu Y., Finite n-normalizer groups, Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 6-10 (in Chinese).

[7] Huppert B., Endlich Gruppen I, Berlin: Springer-Verlag, 1979.

[8] Berkovich Y., Janko Z., Groups of Prime Power Order (Vol. 2), Berlin: Walter de Gruyter, 2008.

[9] Pérez-Ramos M., Groups with two normalizers, Arch. Math., 1988, 50: 199-203.

[10] Xu M., Huang J., Li H., Li S., Introduction to Finite Groups (II), Beijing: Science Press, 2001 (in Chinese).

[11] Gorenstein D., Finite Groups, New York: Harper, Row, 1968.

[12] Passman D. S., Nonnormal subgroups of p-groups, J. Algebra, 1970, 15(3): 352-370.

[13] Wolfgang K., Die A-Norm einer Gruppe, Illinois J. Math., 1961, 5: 187-197.

基金

国家自然科学基金资助项目(10871032)

PDF(356 KB)

342

Accesses

0

Citation

Detail

段落导航
相关文章

/