Gorenstein投射、内射和平坦复形

杨刚

数学学报 ›› 2011, Vol. 54 ›› Issue (3) : 451-460.

PDF(375 KB)
PDF(375 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (3) : 451-460. DOI: 10.12386/A2011sxxb0046
论文

Gorenstein投射、内射和平坦复形

    杨刚
作者信息 +

Gorenstein Projective, Injective and Flat Complexes

    Gang YANG
Author information +
文章历史 +

摘要

证明了在任意结合环R上,复形C是Gorenstein投射复形当且仅当每个层次的模Cm是Gorenstein投射模,由此给出了复形Gorenstein投射维数的性质刻画.并证明了对于正合复形C,若对于任意投射模Q, 函子Hom(-,Q)作用复形C后仍然得到正合复形,则C是Gorenstein投射复形当且仅当对于所有的m∈Z,有Ker(δCm)是Gorenstein投射模.类似地,本文也讨论了关于Gorenstein内射和Gorenstein平坦复形的相应结果.  

Abstract

It is shown in the paper that for a general associative ring R, any complex C of R-modules is Gorenstein projective if and only if each R-module Cm is Gorenstein projective for all m∈Z, as immediate consequences of the result, Gorenstein projective dimensions of complexes are characterized. Furthermore, if C is an exact complex of R-modules such that this sequence remains exact when the functor Hom(-,Q) is applied to it for any projective R-module Q, then C is Gorenstein projective if and only if each Ker(δCm) is Gorenstein projective for all m∈Z. Similarly, Gorenstein injective and Gorenstein flat versions of all these results are given.  

关键词

预包络 / 预覆盖 / Gorenstein投射

Key words

preenvelopes / precovers / Gorenstein projective

引用本文

导出引用
杨刚. Gorenstein投射、内射和平坦复形. 数学学报, 2011, 54(3): 451-460 https://doi.org/10.12386/A2011sxxb0046
Gang YANG. Gorenstein Projective, Injective and Flat Complexes. Acta Mathematica Sinica, Chinese Series, 2011, 54(3): 451-460 https://doi.org/10.12386/A2011sxxb0046

参考文献

[1] Enochs E. E., Jenda O. M. G., Xu J. Z., Orthogonality in the category of complexes, Math. J. OkayamaUniv., 1996, 38(1): 25-46.



[2] Enochs E. E., Garcia Rozas J. R., Gorenstein injective and projective complexes, Comm. Algebra, 1998, 26:1657-1674.



[3] Liu Z. K., Zhang C. X., Gorenstein injective complexes of modules over Noetherian rings, J. Algebra, 2009,321: 1546-1554.



[4] Garcia Rozas J. R., Covers and Envelope in the Category of Complexes of Modules, Boca Raton, London,New York Washington, D. C. 1999.



[5] Enochs E. E., Injective and flat cover, envelopes and resolvents, Israel J. Math., 1981, 140: 278-298.



[6] Asensio Mayor J., Martinez Hernandez J., On flat and projective envelopes, J. Algebra, 1993, 160: 434-440.



[7] Holm H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 2004, 189: 167-193.



[8] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, In: de Gruyter Expositions in Mathematics,Vol. 30, Walter de Gruyter and Co. Berlin, 2000.



[9] Enochs E. E., Jenda O. M. G., Xu J. Z., Covers and envelopes over Gorenstein rings, Tsukuba J. Math., 1996,20(2): 487-503.



[10] Ding N. Q., Chen J. L., Relative covers and envelopes, Acta Mathematica Sinica, Chinese Series, 1998,41(3): 609-616.



[11] Iacob A., DG-injective covers, # -injective covers, preprint.



[12] Brown K., Cohomology of Groups, New York: Springer-Verlag, 1982.



[13] Auslander M., Bridger M., Stable Module Theory, Memoirs Amer Math. Soc., Vol 94. Providence: AmerMath. Soc., 1969.



[14] Enochs E. E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z., 1995, 220(4): 611-633.



[15] Christensen L. W., Frankild A., Holm H., On Gorenstein projective, injective and flat dimensions-A functordescription with applications, J. Algebra, 2006, 302: 231-279.



[16] Christensen L. W., Gorenstein Dimensions. In: Lecture Notes in Mathematics, Vol. 1747, Berlin: Springer,2000.



[17] Holm H., Gorenstein derived functors, Proc. Amer. Math. Soc., 2004, 132(7): 1913-1923.



[18] Holm H., Rings with finite Gorenstein injective dimensions, Proc. Amer. Math. Soc., 2003, 132(5): 1279-1283.



[19] Enochs E. E., Jenda O. M. G., Torrecillas B., Gorenstein flat modules, Nanjing Daxue Xuebao ShuxueBannian Kan, 1993, 10: 1-9.

基金

国家自然科学基金资助项目(10901129)

PDF(375 KB)

324

Accesses

0

Citation

Detail

段落导航
相关文章

/