证明了在任意结合环R上,复形C是Gorenstein投射复形当且仅当每个层次的模Cm是Gorenstein投射模,由此给出了复形Gorenstein投射维数的性质刻画.并证明了对于正合复形C,若对于任意投射模Q, 函子Hom(-,Q)作用复形C后仍然得到正合复形,则C是Gorenstein投射复形当且仅当对于所有的m∈Z,有Ker(δCm)是Gorenstein投射模.类似地,本文也讨论了关于Gorenstein内射和Gorenstein平坦复形的相应结果.
Abstract
It is shown in the paper that for a general associative ring R, any complex C of R-modules is Gorenstein projective if and only if each R-module Cm is Gorenstein projective for all m∈Z, as immediate consequences of the result, Gorenstein projective dimensions of complexes are characterized. Furthermore, if C is an exact complex of R-modules such that this sequence remains exact when the functor Hom(-,Q) is applied to it for any projective R-module Q, then C is Gorenstein projective if and only if each Ker(δCm) is Gorenstein projective for all m∈Z. Similarly, Gorenstein injective and Gorenstein flat versions of all these results are given.
关键词
预包络 /
预覆盖 /
Gorenstein投射
{{custom_keyword}} /
Key words
preenvelopes /
precovers /
Gorenstein projective
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Enochs E. E., Jenda O. M. G., Xu J. Z., Orthogonality in the category of complexes, Math. J. OkayamaUniv., 1996, 38(1): 25-46.
[2] Enochs E. E., Garcia Rozas J. R., Gorenstein injective and projective complexes, Comm. Algebra, 1998, 26:1657-1674.
[3] Liu Z. K., Zhang C. X., Gorenstein injective complexes of modules over Noetherian rings, J. Algebra, 2009,321: 1546-1554.
[4] Garcia Rozas J. R., Covers and Envelope in the Category of Complexes of Modules, Boca Raton, London,New York Washington, D. C. 1999.
[5] Enochs E. E., Injective and flat cover, envelopes and resolvents, Israel J. Math., 1981, 140: 278-298.
[6] Asensio Mayor J., Martinez Hernandez J., On flat and projective envelopes, J. Algebra, 1993, 160: 434-440.
[7] Holm H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 2004, 189: 167-193.
[8] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, In: de Gruyter Expositions in Mathematics,Vol. 30, Walter de Gruyter and Co. Berlin, 2000.
[9] Enochs E. E., Jenda O. M. G., Xu J. Z., Covers and envelopes over Gorenstein rings, Tsukuba J. Math., 1996,20(2): 487-503.
[10] Ding N. Q., Chen J. L., Relative covers and envelopes, Acta Mathematica Sinica, Chinese Series, 1998,41(3): 609-616.
[11] Iacob A., DG-injective covers, # -injective covers, preprint.
[12] Brown K., Cohomology of Groups, New York: Springer-Verlag, 1982.
[13] Auslander M., Bridger M., Stable Module Theory, Memoirs Amer Math. Soc., Vol 94. Providence: AmerMath. Soc., 1969.
[14] Enochs E. E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z., 1995, 220(4): 611-633.
[15] Christensen L. W., Frankild A., Holm H., On Gorenstein projective, injective and flat dimensions-A functordescription with applications, J. Algebra, 2006, 302: 231-279.
[16] Christensen L. W., Gorenstein Dimensions. In: Lecture Notes in Mathematics, Vol. 1747, Berlin: Springer,2000.
[17] Holm H., Gorenstein derived functors, Proc. Amer. Math. Soc., 2004, 132(7): 1913-1923.
[18] Holm H., Rings with finite Gorenstein injective dimensions, Proc. Amer. Math. Soc., 2003, 132(5): 1279-1283.
[19] Enochs E. E., Jenda O. M. G., Torrecillas B., Gorenstein flat modules, Nanjing Daxue Xuebao ShuxueBannian Kan, 1993, 10: 1-9.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}