
猜测“存在Banach空间X使得K0(B(X))=Z2”的一个注记
A Note on the Guess “There Exists a Banach Space X with K0(B(X)) = Z2”
Banach空间 / 算子代数 / K0群 {{custom_keyword}} /
Banach spaces / operator algebras / K0-groups {{custom_keyword}} /
[1] Elliott G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra, 1976, 38: 29-44.
[2] Gowers W. T., Maurey B., The unconditional basic sequence problem, J. Amer. Math. Soc., 1993, 6(3): 851-874.
[3] Gowers W. T., Maurey B., Banach spaces with small spaces of operators, Math. Ann., 1997, 307: 543-568.
[4] Lindenstrauss J., The work of Gowers W T. Notices Amer. Math. Soc., 1999, 46(1): 19-20.
[5] Maurey B., Banach spaces with few operators, Handbook of the Geometry of Banach Spaces, Vol 2., Amsterdam: North-Holland, 2002, 1247-1298.
[6] Laustsen N. J., K-theory for algebra of operators on Banach spaces, J. London Math. Soc., 1999, 59(2): 715-728.
[7] Laustsen N. J., K-Theory for the Banach algebras of operators on James’ quasi-reflexive Banach spaces, K-Theory, 2000, 23: 115-127.
[8] Laustsen N. J., Divisibility in the K0-Group of the algebra of operators on a Banach space, K-Theory, 2001, 22: 241-249.
[9] Zsak A., A Banach space whose operator algebra has K0-group Q, Proc. London Math. Soc., 2002, 84(3): 747-768.
[10] Zhang Y. N., Zhong H. J., Su W. G., On K0 groups of operator algebras on Banach spaces, Science in China, 2006, 49(2): 233-244.
[11] Blackadar B., K-Theory for Operator Algebras, New York: Springer-Verlag, 1986.
[12] Lindenstrauss J., Tzafriri L., Classical Banach Spaces I, New York: Springer-Verlag, 1977.
国家自然科学基金资助项目(10926173);福建省自然科学基金资助项目(2009J05002)
/
〈 |
|
〉 |