Hilbert C*-模中g-框架的一些性质

姚喜妍

数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 1-8.

PDF(401 KB)
PDF(401 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 1-8. DOI: 10.12386/A2011sxxb0001
论文

Hilbert C*-模中g-框架的一些性质

    姚喜妍
作者信息 +

Some Properties of g-Frames in Hilbert C*-Modules

Author information +
文章历史 +

摘要

本文运用算子理论方法, 给出Hilbert C*-模中g-框架的一些性质并讨论g-框架的扰动性,得到g-框架的和的一些刻画. 所得结果推广和改进了已有的结果.

 

Abstract

In this paper, utilizing the method of operator theory, some properties and perturbation of g-franes in Hilbert C*-modules are discussed. some characterizations of sums of g-frames in Hilbert C*-modules are obtained. Moreover, it is shown that these results extend and improve the existing results.

 

关键词

Hilbert C*-模 / g-框架 / g-框架算子

Key words

Hilbert C*-module / g-frame / g-frame operator

引用本文

导出引用
姚喜妍. Hilbert C*-模中g-框架的一些性质. 数学学报, 2011, 54(1): 1-8 https://doi.org/10.12386/A2011sxxb0001
Some Properties of g-Frames in Hilbert C*-Modules. Acta Mathematica Sinica, Chinese Series, 2011, 54(1): 1-8 https://doi.org/10.12386/A2011sxxb0001

参考文献


[1] Gabor D., Theory of communictions, Jour. Inst. Elec. Engrg., 1946, 93: 429--457.


[2] Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72: 341--366.


[3] Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansion, J. Math. Phys., 1986, 27: 1271--1283.


[4] Casazza P. G., The art of frame theory, Taiwanese J. Math., 2000, 4: 129--201.


[5] Christensen O., An Introduction to Frames and Riesz Bases, Boston: Birkhauser, 2003.


[6] Mallat S., A Wavelet tour of Signal Proeessing (Seeond Edition), San Diego: Academic Press, 2000.


[7] Chan R. H., Riemensehneider S. D., Shen L., Shen Z., Tight frame: An efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal., 2004, 17: 91--115.


[8] Frichtinger H. G., Gröchenig K., Theory and Practice Irregular Sampling, in Wavelets: Mathematics and Applications, (Benedetto I. I. and Frazier M., eds.), CRC Press, 1994: 305--363


[9] Dudey Ward N. E., Partington J. R., A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling, SIAM J. Control Optim., 1998, 36: 654--679.


[10] Holmes R. B., Paulsen V. I., Optimal frames for erasures, Linear Algebra Appl., 2004, 377: 31--51.


[11] Strohmer T., Heath R., Grassmanian frames with applications to coding and communications, Appl. Comput. Harmon. Anal., 2003, 14: 257--275.


[12] Frank M., Larson D. R., Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory, 2002, 48: 273--314.


[13] Sun W., g-Frames and g-Riesz bases, J. Math. Anal. Appl., 2006, 322: 437--452.


[14] Sun W., Stability of g-frames, J. Math. Anal. Appl., 2007, 326: 858--868.


[15] Khosravi A., Khosravi B., Fusion frames and g-frames in Hilbert C*-modules, Int. J. Wavelets Multiresolut. Inf. Process, 2008, 6: 433--466.


[16] Xiao X. C., Zeng X. M., Some properties of g-frames in Hilbert C*-modules, J. Math. Anal. Appl., 2010, 363: 399--408.


[17] Zhu Y. C., Characterization of g-frames and g-Riesz bases in Hilbert spaces, Acta Mathematica Sinica, English Series, 2008, 24(10): 1727--1736.


[18] Xiao X. C., Zhu Y. C., Zeng X. M., Some properties of g-Parseval frames in Hilbert spaces, Acta Mathematica Sinica, Chinese Series, 2008, 51(6): 1143--1150.

基金

山西省重点学科基金项目(20091028)及教育厅基金项目(304);运城学院科研项目(2009003)

PDF(401 KB)

308

Accesses

0

Citation

Detail

段落导航
相关文章

/