空间4-体问题舞蹈周期解的新证明

李凤英, 张雪峰, 程迪祥

数学学报 ›› 2010, Vol. 53 ›› Issue (6) : 1075-1080.

PDF(408 KB)
PDF(408 KB)
数学学报 ›› 2010, Vol. 53 ›› Issue (6) : 1075-1080. DOI: 10.12386/A2010sxxb0120
论文

空间4-体问题舞蹈周期解的新证明

    李凤英1, 张雪峰2, 程迪祥3
作者信息 +

A New Proof on the Hip-Hop Periodic Solution for the Spatial 4-Body Problem

    Feng Ying LI1, Xue Feng ZHANG2, Di Xiang CHENG3
Author information +
文章历史 +

摘要

运用张世清和周青关于牛顿N-体问题具有对称性的碰撞广义解的Lagrange作用的下界估计,给出了等质量的牛顿四体问题非碰撞和非平面舞蹈周期解存在性的一个简单证明.

Abstract

For the Newtonian 4-body problems with equal masses, we give a new simple proof for the existence of the hip-hop non-collision and nonplanar periodic solution, where we used the lower bound estimates of Zhang and Zhou on the Lagrangian action on the symmetrical generalized solutions for Newtonian N-body problems.

关键词

空间4-体问题 / 变分最小 / 非平面周期解

Key words

spatial 4-body problems / variational minimizer / periodic solution

引用本文

导出引用
李凤英, 张雪峰, 程迪祥. 空间4-体问题舞蹈周期解的新证明. 数学学报, 2010, 53(6): 1075-1080 https://doi.org/10.12386/A2010sxxb0120
Feng Ying LI, Xue Feng ZHANG, Di Xiang CHENG. A New Proof on the Hip-Hop Periodic Solution for the Spatial 4-Body Problem. Acta Mathematica Sinica, Chinese Series, 2010, 53(6): 1075-1080 https://doi.org/10.12386/A2010sxxb0120

参考文献


[1] Berkovich Y., Janko Z., Structure of finite p-groups with given subgroups, Contemp. Math., 2006, 402: 13--93.

[2] Glauberman G., Large subgroups of small class in finite p-groups, J. Algebra, 2004, 272(1): 128--153.

[3] Glauberman G., Abelian subgroups of small index in finite p-groups, J. Group Theory, 2005, 8(5): 539--560.

[4] Glauberman G., Centrally large subgroups of finite p-groups, J. Algebra, 2006, 300(2): 480--508.

[5] Janko Z., Finite 2-groups with exactly four cyclic subgroups of order 2n, J. Reine Angew. Math., 2004, 566: 135--181.

[6] Robinson D. J. S., A Course in the Theory of Groups, New York: Springer-Verlag, 1980.

[7] Suzuki M., Group Theory I, New York: Springer-Verlag, 1982.

[8] Xu M. Y., Qu H. P., Zhang Q. H., Finite p-groups all of whose subgroups of index p2 are metacyclic, to appper in Acta Math. Sci.

[9] Zhang Q. H., Li L. L., Xu M. Y., Finite p-groups all of whose quotient groups are abelian or inner-abelian, to appear in Comm. Alg.

[10] Zhang Q. H., Guo X. Q., Qu H. P., Xu M. Y., Finite groups which have many normal subgroups, J. Korean Math. Soc., 2009, 46(6): 1165--1178.

[11] Li L. L., Qu H. P., Chen G. Y., Central extension of inner abelian p-groups (I), Acta Mathematica Sinica, Chinese Series, 2010, 53(4): 675--684.

[12] Qu H. P., Zhang X. H., The central extension of inner abelian p-groups (II), Acta Mathematica Sinica, Chinese Series, 2010, 53(5): 933--944.

[13] Xu M. Y., Introduction to Finite Groups (I), The Second Edition, Beijing: Science Press, 1999.

[14] Xu M. Y., Huang J. H., Li H. L., Li S. R., Introduction to Finite Groups (II), Beijing: Science Press, 1999.

基金

国家自然科学基金资助项目(10771121)

PDF(408 KB)

Accesses

Citation

Detail

段落导航
相关文章

/