
空间4-体问题舞蹈周期解的新证明
A New Proof on the Hip-Hop Periodic Solution for the Spatial 4-Body Problem
运用张世清和周青关于牛顿N-体问题具有对称性的碰撞广义解的Lagrange作用的下界估计,给出了等质量的牛顿四体问题非碰撞和非平面舞蹈周期解存在性的一个简单证明.
For the Newtonian 4-body problems with equal masses, we give a new simple proof for the existence of the hip-hop non-collision and nonplanar periodic solution, where we used the lower bound estimates of Zhang and Zhou on the Lagrangian action on the symmetrical generalized solutions for Newtonian N-body problems.
空间4-体问题 / 变分最小 / 非平面周期解 {{custom_keyword}} /
spatial 4-body problems / variational minimizer / periodic solution {{custom_keyword}} /
[1] Berkovich Y., Janko Z., Structure of finite p-groups with given subgroups, Contemp. Math., 2006, 402: 13--93.
[2] Glauberman G., Large subgroups of small class in finite p-groups, J. Algebra, 2004, 272(1): 128--153.
[3] Glauberman G., Abelian subgroups of small index in finite p-groups, J. Group Theory, 2005, 8(5): 539--560.
[4] Glauberman G., Centrally large subgroups of finite p-groups, J. Algebra, 2006, 300(2): 480--508.
[5] Janko Z., Finite 2-groups with exactly four cyclic subgroups of order 2n, J. Reine Angew. Math., 2004, 566: 135--181.
[6] Robinson D. J. S., A Course in the Theory of Groups, New York: Springer-Verlag, 1980.
[7] Suzuki M., Group Theory I, New York: Springer-Verlag, 1982.
[8] Xu M. Y., Qu H. P., Zhang Q. H., Finite p-groups all of whose subgroups of index p2 are metacyclic, to appper in Acta Math. Sci.
[9] Zhang Q. H., Li L. L., Xu M. Y., Finite p-groups all of whose quotient groups are abelian or inner-abelian, to appear in Comm. Alg.
[10] Zhang Q. H., Guo X. Q., Qu H. P., Xu M. Y., Finite groups which have many normal subgroups, J. Korean Math. Soc., 2009, 46(6): 1165--1178.
[11] Li L. L., Qu H. P., Chen G. Y., Central extension of inner abelian p-groups (I), Acta Mathematica Sinica, Chinese Series, 2010, 53(4): 675--684.
[12] Qu H. P., Zhang X. H., The central extension of inner abelian p-groups (II), Acta Mathematica Sinica, Chinese Series, 2010, 53(5): 933--944.
[13] Xu M. Y., Introduction to Finite Groups (I), The Second Edition, Beijing: Science Press, 1999.
[14] Xu M. Y., Huang J. H., Li H. L., Li S. R., Introduction to Finite Groups (II), Beijing: Science Press, 1999.
国家自然科学基金资助项目(10771121)
/
〈 |
|
〉 |