
对称超二次二阶哈密尔顿系统的周期解
Periodic Solutions for Symmetric Superquadratic Second Order Hamiltonian Systems
对称二阶哈密尔顿系统 / 周期解 / 山路引理 {{custom_keyword}} /
symmetric second order Hamiltonian systems / periodic solutions / Mountain-Pass lemma {{custom_keyword}} /
[1] Rabinowitz P. H., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 1978, 31: 157--184.
[2] Rabinowitz P. H., Minimax Methods in Critical Point Thoery with Applications to Differential Equation, CBMS Reg. Conf. Ser.in Math. 65, AMS, 1986.
[3] Long Y., Index Theory For Symplectic Paths with Applications, Birkhauser Verlag, 2002.
[4] Mawhin J., Willem M., Critical Point Theory And Hamiltonian System, Berlin: Springer, 1989.
[5] Struwe M., Variational Methods, Berlin: Springer, 1990.
[6] Nirenberg L., Variational and topological methods in nonliear problems, Bull. AMS, New Series, 1981, 4: 267--302.
[7] Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and application, J. Funct. Analysis, 1973, 14: 349--381.
[8] Cerami G., Un criterio di esistenza per i punti critici so variete illimitate, Rend. dell academia di sc.lombardo, 1978, 112: 332--336.
[9] Palais R., The principle of symmetric criticality, CMP, 1979, 69: 19--30.
[10] Chang K. C., Critical point theory and applications, Shanghai: Shanghai Academic Press, 1986 (in Chinese).
[11] Zheng J. M., Cheng J. X., Periodic solutions for a classes of second order Hamiltonian systems, Acta Mathematica Sinica, Chinese Series, 2010, 53(4): 721--726.
[12] Zhang S. Q., periodic Solutions for some second order Hamiltonian systems, Nonliearity, 2009, 22: 2141--2150.
[13] Yosida K., Functional Analysis, 5th ed., Berlin: Springer, 1978.
国家自然科学基金资助项目(10871217)
/
〈 |
|
〉 |