对称超二次二阶哈密尔顿系统的周期解

陈义安, 李凤英

数学学报 ›› 2010, Vol. 53 ›› Issue (4) : 827-832.

PDF(369 KB)
PDF(369 KB)
数学学报 ›› 2010, Vol. 53 ›› Issue (4) : 827-832. DOI: 10.12386/A2010sxxb0092
论文

对称超二次二阶哈密尔顿系统的周期解

    陈义安1, 李凤英2
作者信息 +

Periodic Solutions for Symmetric Superquadratic Second Order Hamiltonian Systems

    Yi An CHEN1, Feng Ying LI2
Author information +
文章历史 +

摘要

我们利用 Ambrosetti--Rabinowitz对称形式的山路引理证明了给定周期T的对称超二次二阶哈密尔顿系统具有无穷多个反(T/2)-周期且奇的周期解.

 

Abstract

We use the symmetrical Mountain-Pass lemma of Ambrosetti--Rabinowitz to prove the existence of infinitely anti-(T/2) and odd periodic solutions with a fixed period T for symmetric superquadratic second order Hamiltonian systems.

 

关键词

对称二阶哈密尔顿系统 / 周期解 / 山路引理

Key words

symmetric second order Hamiltonian systems / periodic solutions / Mountain-Pass lemma

引用本文

导出引用
陈义安, 李凤英. 对称超二次二阶哈密尔顿系统的周期解. 数学学报, 2010, 53(4): 827-832 https://doi.org/10.12386/A2010sxxb0092
Yi An CHEN, Feng Ying LI. Periodic Solutions for Symmetric Superquadratic Second Order Hamiltonian Systems. Acta Mathematica Sinica, Chinese Series, 2010, 53(4): 827-832 https://doi.org/10.12386/A2010sxxb0092

参考文献


[1] Rabinowitz P. H., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 1978, 31: 157--184.

[2] Rabinowitz P. H., Minimax Methods in Critical Point Thoery with Applications to Differential Equation, CBMS Reg. Conf. Ser.in Math. 65, AMS, 1986.

[3] Long Y., Index Theory For Symplectic Paths with Applications, Birkhauser Verlag, 2002.

[4] Mawhin J., Willem M., Critical Point Theory And Hamiltonian System, Berlin: Springer, 1989.

[5] Struwe M., Variational Methods, Berlin: Springer, 1990.

[6] Nirenberg L., Variational and topological methods in nonliear problems, Bull. AMS, New Series, 1981, 4: 267--302.

[7] Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and application, J. Funct. Analysis, 1973, 14: 349--381.

[8] Cerami G., Un criterio di esistenza per i punti critici so variete illimitate, Rend. dell academia di sc.lombardo, 1978, 112: 332--336.

[9] Palais R., The principle of symmetric criticality, CMP, 1979, 69: 19--30.

[10] Chang K. C., Critical point theory and applications, Shanghai: Shanghai Academic Press, 1986 (in Chinese).

[11] Zheng J. M., Cheng J. X., Periodic solutions for a classes of second order Hamiltonian systems, Acta Mathematica Sinica, Chinese Series, 2010, 53(4): 721--726.

[12] Zhang S. Q., periodic Solutions for some second order Hamiltonian systems, Nonliearity, 2009, 22: 2141--2150.

[13] Yosida K., Functional Analysis, 5th ed., Berlin: Springer, 1978.

基金

国家自然科学基金资助项目(10871217)

PDF(369 KB)

235

Accesses

0

Citation

Detail

段落导航
相关文章

/