(F1,F2)-攀援集的一些注记

李占红, 汪火云, 熊金城

数学学报 ›› 2010, Vol. 53 ›› Issue (4) : 727-732.

PDF(400 KB)
PDF(400 KB)
数学学报 ›› 2010, Vol. 53 ›› Issue (4) : 727-732. DOI: 10.12386/A2010sxxb0081
论文

(F1,F2)-攀援集的一些注记

    李占红1, 汪火云1, 熊金城2
作者信息 +

Some Remarks on (F1,F2)-Scrambled Sets

    Zhan Hong LI1, Huo Yun WANG1, Jin Cheng XIONG2
Author information +
文章历史 +

摘要

研究 (F1,F2)-攀援集的迭代不变性.定义了与正整数 k 相关的 Furstenberg 族的性质 P(k) 和 Q(k).指出: 对任意介于 0, 1 之间的实数 s 而言, Furstenberg 族具有性质 P(k) 和 Q(k), 其中表示非负整数集的所有上密度不小于s的无限子集构成的集族. 据此证明了: 对任意正整数 k, S 为系统(X,f) 的-攀援集当且仅当 S为系统 (X,fk) 的-攀援集,其中 s,t是介于 0,1 之间的任意给定的实数.  

Abstract

This paper deals with the invariance (F1,F2)-scrambled set under iterations. For a positive integer k, the properties P(k) and Q(k) of Furstenberg families are introduced. It is shown that for any s∈[0,1], the Furstenberg family has the properties P(k) and Q(k), where denotes the family of all infinite subsets of whose upper density is not less than s. Furthermore, we prove that for any positive integer k, S is an -scrambled set of (X,f) if and only if S is an -scrambled set of (X,fk), where s,t∈[0,1].  

关键词

/ 攀援集 / 混沌

Key words

Furstenberg family / scrambled set / chaos

引用本文

导出引用
李占红, 汪火云, 熊金城. (F1,F2)-攀援集的一些注记. 数学学报, 2010, 53(4): 727-732 https://doi.org/10.12386/A2010sxxb0081
Zhan Hong LI, Huo Yun WANG, Jin Cheng XIONG. Some Remarks on (F1,F2)-Scrambled Sets. Acta Mathematica Sinica, Chinese Series, 2010, 53(4): 727-732 https://doi.org/10.12386/A2010sxxb0081

参考文献



[1] Akin E., Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions, New York: Plenum Press, 1997.



[2] Huang W., Shao S., Ye X., Mixing and proximal cells along sequences, Nonlinearity, 2004, 17: 1245--1260.



[3] Shao S., Proximity and distality via Furstenberg families, Topology and its Applications, 2006, 153: 2055--2072.



[4] Xiong J. C., Lü J., Tan F., Furstenberg family and chaos, Science in China Ser. A, 2007, 50: 1325--1333.



[5] Schweizer B., Smítal J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 1994, 334: 737--754.



[6] Balibrea F., Smítal J., ?tefánková M., The three versions of distributional Chaos, Chaos, Solitions and Fractals, 2005, 23: 1581--1583.



[7] Tan F., Xiong J. C., Chaos via Furstenberg family couple, Topology and its Applications, 2009, 156: 525--532.



[8] Blanchard F., Huang W., Snoha L., Topological size of scrambled sets, Colloq. Math., 2008, 110: 293--361.



[9] Wang L. D., Huan S. M., Huang G. F., A note on Schweizer-Smital chaos, Nonlinear Analysis, 2008, 68: 1682--1686.



[10] Yuan D. L., On Distributional Chaos, South China Normal University Ph.D.Thesis, in Chinese, 2008.



[11] Lü J., Xiong J. C., Tan F., Distributional chaos of periodically adsorbing system, Acta Mathematica Sinica, Chinese Series, 2008, 51(6): 1109--1114.

基金

国家自然科学基金资助项目(10771079);广州市属高校科技计划项目(08C016)

PDF(400 KB)

Accesses

Citation

Detail

段落导航
相关文章

/