一类二阶哈密尔顿系统的周期解

郑继明, 程迪祥

数学学报 ›› 2010, Vol. 53 ›› Issue (4) : 721-726.

PDF(308 KB)
PDF(308 KB)
数学学报 ›› 2010, Vol. 53 ›› Issue (4) : 721-726. DOI: 10.12386/A2010sxxb0080
论文

一类二阶哈密尔顿系统的周期解

    郑继明1, 程迪祥2
作者信息 +

Periodic Solutions for a Class of Second Order Hamiltonian Systems

    Ji Ming ZHENG1, Di Xiang CHENG2
Author information +
文章历史 +

摘要

在(CPS)C 及(PS)C条件下, 利用 Ambrosetti--Rabinowitz 对称形式的山路引理,研究了一类二阶哈密尔顿保守系统在给定能量面上的无穷多个周期解的存在性问题.
 

Abstract

We use the Symmetrical Mountain Pass Lemma of Ambrosetti--Rabinowitz with (CPS)C and (PS)Ccondition to study the existence of infinitly periodic solutions with a fixed energy for some second order Hamiltonian conservative systems.
 

关键词

二阶哈密尔顿系统 / 周期解 / 带(CPS)C及(PS)C条件的对称形式的山路引理

Key words

Second order Hamiltonian systems / periodic solutions / Mountain-Pass Lemma with (CPS)C and (PS)C condition

引用本文

导出引用
郑继明, 程迪祥. 一类二阶哈密尔顿系统的周期解. 数学学报, 2010, 53(4): 721-726 https://doi.org/10.12386/A2010sxxb0080
Ji Ming ZHENG, Di Xiang CHENG. Periodic Solutions for a Class of Second Order Hamiltonian Systems. Acta Mathematica Sinica, Chinese Series, 2010, 53(4): 721-726 https://doi.org/10.12386/A2010sxxb0080

参考文献


[1] Rabinowitz P. H., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 1978, 31: 157--184.

[2] Long Y., Index Theory for Symplectic Paths with Applications, Birkhauser: Verlag, 2002.

[3] Mawhin J., Willem M., Critical Point Theory and Hamiltonian System, Berlin: Springer, 1989.

[4] Struwe M., Variational Methods, Berlin: Springer, 1990.

[5] Benci V., Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincare Anal. NonLineaire, 1984, 1: 401--412.

[6] Cerami G., Un criterio di esistenza per i punti critici so variete illimitate, Rend. dell Academia di sc. Lombardo, 1978, 112: 332--336.

[7] Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and application, J. Funct. Analysis, 1973, 14: 349--381.

[8] Palais R., The principle of symmetric criticality, CMP, 1979, 69: 19--30.

[9] Ambrosetti A., Coti Zelati V., Closed orbits of fixed energy for singular hamiltonian systems, Arch. Rational Mech. Anal., 1990, 112: 339--362.

[10] Adams R. A., Fournier J. F., Sobolev Spaces, Second Edition, New York: Academic Press, 2003.

[11] Chang K. C., Critical Point Theory and Applications, Shanghai: Shanghai Academic Press, 1986 (in Chinese).

[12] Yosida K., Functional Analysis, 5th ed., Berlin: Springer, 1978.

[13] Ambrosetti A., Coti Zelati V., Closed orbits of fixed energy for a class of N-body Problems, Ann. Inst. H. Poincare Anal. NonLineaire, 1992, 9: 187--200, Addendum, 1992, 9: 337--338.

[14] Cheng D., Liu Z., Huang X., {Periodic solutions of a class of Newtonian equation, CPAA, 2009, 8: 1795--1801.

[15] Zhang S. Q., periodic Solutions for some second order Hamiltonian systems, Nonliearity, 2009, 22: 2141--2150.

基金

国家自然科学基金资助项目(10871106)

PDF(308 KB)

261

Accesses

0

Citation

Detail

段落导航
相关文章

/