扭转性质和无先验界的二阶微分方程

孙西滢, 钱定边

数学学报 ›› 2009, Vol. 52 ›› Issue (6) : 1199-1206.

PDF(533 KB)
PDF(533 KB)
数学学报 ›› 2009, Vol. 52 ›› Issue (6) : 1199-1206. DOI: 10.12386/A2009sxxb0149
论文

扭转性质和无先验界的二阶微分方程

    孙西滢, 钱定边
作者信息 +

Twist Property and the Second Order Differential Equations Without a Priori Bounds

    Xi Ying SUN, Ding Bian QIAN
Author information +
文章历史 +

摘要

本文研究了具有扭转性的二阶微分方程, 证明在一定条件下通过角函数的扭转所表述的几何性质可以得到周期解的存在性. 从而得到了一些无先验界的时变位势的超线性二阶微分方程和可逆系统的周期解的存在性的新结果.

 

Abstract

We study some twist second order differential equations. We prove that in some cases, the geometric property of angle function implies the existence of periodic solutions. As the applications, we obtain some new results for the existence of periodic solutions for some second order equations or reversible systems without a priori bounds, such as superlinear second order equations or reversible systems with time-dependent potential.

 

关键词

周期解的存在性 / 二阶微分方程 / 扭转不动点定理

Key words

existence of periodic solutions / second order differential equations / twist fixed point theorem

引用本文

导出引用
孙西滢, 钱定边. 扭转性质和无先验界的二阶微分方程. 数学学报, 2009, 52(6): 1199-1206 https://doi.org/10.12386/A2009sxxb0149
Xi Ying SUN, Ding Bian QIAN. Twist Property and the Second Order Differential Equations Without a Priori Bounds. Acta Mathematica Sinica, Chinese Series, 2009, 52(6): 1199-1206 https://doi.org/10.12386/A2009sxxb0149

参考文献


[1] Mawhin J., Wilem M., Critical Point Theory and Hamiltonian Systems, New York: Springer-Verlag, 1989.

[2] Jiang M., Periodic solutions of second order differential equations with an obstacle, Nonlinearity, 2006, 19: 1165--1183.

[3] Qian D., Infinity of subharmonics for asymmetric Duffing equations with Lazer-Leach-Dancer condition, J. Differential Equations, 2001, 171: 233--250.

[4] Ding T., Zanolin F., Time-maps for thesolvability of periodically perturbed nonlinear Duffing equations, Nonlinear Analysis TMA, 1991, 17: 635--653.

[5] Ding T., Zanolin F., Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 1992, 97: 328--378.

[6] Ding T., Iannacci R., Zanolin F., Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations, 1993, 105: 364--409.

[7] Ding W. Y., The fixed point of twist map and the periodic solutions of ordinary differential equations, Acta Mathematica Sinica, Chinese Series, 1982, 25(2): 227--235.

[8] Hartman P., On boundary value problems for superlinear second order differential equations, J. Differential Equations, 1977, 26: 37--53.

[9] Jacobowitz H., Periodic solutions of x''+f(t,x)=0 via the Poincar\'e-Birkhoff theorem, J. Differential Equations, 1976, 20: 37--52. indent=6mm

[10] Capietto A., Mawhin J., Zanolin F., Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 1992, 329: 41--72.

[11] Capietto A., Mawhin J., Zanolin F., A Continuation theorem for periodic boundary value problems with oscillatory nonlinearities, Nonlinear Differential Equations and Applications, 1995, 2: 133--163.

[12] Coffmann C., Ulrich D., On the continuation of solutions of a certain nonlinear differential equation, Monatsh. Math., 1967, 71: 385--392.

[13] Moser J., Zehnder E., Notes on Dynamical Systems, Courant Lecture Notes in Mathematics, New York: Courant Institute of Mathematical Sciences, 2005.

[14] Qian D., Periodic solutions for second order equations with time-dependent potential via time map, J. Math. Anal. Appl., 2004, 294: 361--372.

[15] Qian D., On forced nonlinear oscillations for the second order equations with semiquadratic potential, Nonlinear Analysis TMA, 1996, 26: 1715--1731.

基金

国家自然科学基金(10571131); 教育部博士点基金(20070285002);江苏省自然科学基金(BK2006046)

PDF(533 KB)

267

Accesses

0

Citation

Detail

段落导航
相关文章

/