
半序空间中一类算子方程的可解性及应用
Solvability Theorems with Applications of an Operator Equation in Partial Order Space
半序 / 完备度量空间 / Banach空间 {{custom_keyword}} /
partial order / complete metric space / Banach space {{custom_keyword}} /
[1] Caristi J., Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 1976, 215: 241--251.
[2] Feng Y. Q., Liu S. Y., Solveability of an operator equation in partial order space, Acta Mathematica Sinica, Chinese Series, 2003, 46: 411--416.
[3] Feng Y. Q., Liu S. Y., Solveability of an operator equation in partial order compiete metric space and partial order Banach space, Acta Mathematica Sinica, Chinese Series, 2005, 48: 109--114.
[4] Duan H. G., Fixed Point Theorems with Applications of Several Classes of Nonlinear Operators, Nanchang: Jiangxi Normal University, 2004.
[5] Guo D. J., Partial Order Methods in Nonlinear Analysis, Jinan: Shandong Science and Technology Press, 2000 (in Chinese).
[6] Zhu C. X., Generalizations of Krasnoselskii's theorem and Petryshyn's theorem, Appl. Math. Letters, 2006, 19: 628--632.
[7] Guo D. J., Existence and uniqueness of positive fixed points for mixed monotone operators and applications, Appl. Anal., 1992, 46: 91--100.
[8] Liang Z. D., Wang W. X., Li S. J., On concave operators, Acta Mathematica Sinica, English Series, 2006, 22(2): 577--582.
[9] Zhao Z. Q., Existence of positive fixed points for a convex operators with applications, Acta Mathematica Sinica, Chinese Series, 2006, 49(1): 139--144. indent=6mm
[10] Zhai C. B., Wang W. X., Zhang L. L., Generalizations for a class of concave and convex operators, Acta Mathematica Sinica, Chinese Series, 2008, 51(3): 529--540.
国家自然科学基金资助项目(10461007,10761007);江西省自然科学基金资助项目(0411043);江西省教育厅科研项目2006[8]
/
〈 |
|
〉 |