Romanoff定理的定量形式

孙学功;陈永高;

数学学报 ›› 2006, Vol. 49 ›› Issue (3) : 577-582.

PDF(354 KB)
PDF(354 KB)
数学学报 ›› 2006, Vol. 49 ›› Issue (3) : 577-582. DOI: 10.12386/A2006sxxb0072
论文

Romanoff定理的定量形式

    孙学功;陈永高;
作者信息 +

On Quantitative Romanoff's Theorem

    Xue Gong SUN(2), Yong Gao CHEN
Author information +
文章历史 +

摘要

1934年,Romanoff证明了能表成2的方幂与一个素数之和形式的正整数在正整数集合中有正的比例.最近,本文作者证明了对充分大的x,能表成2的方幂与一个素数之和形式的正整数在不超过x的正整数中至少有0.0868x个.本文证明了:设 x≥5,则在不超过x的正整数中,能表成2的方幂与一个素数之和的数的个数不少于 0.005x,即给出了Romanoff定理的定量形式.

Abstract

In 1934, Romanoff proved that there are positive proportion natural numbers which can be expressed as a sum of a prime and a power of 2. Recently, the authors proved that for all sufficiently larger x, the proportion is large than 0.0868. In this paper,a quantitative version of Romanoff's Theorem is given. The following result is proved: For all x≥5, the proportion of natural numbers which can be expressed as a sum of a prime and a power of 2 is larger than 0.005.

关键词

素数 / Selberg筛法 / Romanoff定理

引用本文

导出引用
孙学功;陈永高;. Romanoff定理的定量形式. 数学学报, 2006, 49(3): 577-582 https://doi.org/10.12386/A2006sxxb0072
Xue Gong SUN(2), Yong Gao CHEN. On Quantitative Romanoff's Theorem. Acta Mathematica Sinica, Chinese Series, 2006, 49(3): 577-582 https://doi.org/10.12386/A2006sxxb0072
PDF(354 KB)

420

Accesses

0

Citation

Detail

段落导航
相关文章

/