查甫雷金方程的唯一性定理(Ⅲ)

董光昌

数学学报 ›› 1959, Vol. 9 ›› Issue (4) : 365-381.

数学学报 ›› 1959, Vol. 9 ›› Issue (4) : 365-381. DOI: 10.12386/A1959sxxb0034
论文

查甫雷金方程的唯一性定理(Ⅲ)

    董光昌
作者信息 +

UNIQUENESS THEOREM FOR CHAPLYGIN'S PROBLEM(Ⅲ)

Author information +
文章历史 +

摘要

<正> 考虑下列混合型方程的唯一性问题K(y)u_(xx)+u_(yy)=0(K(0)=0;当y≠0时,dK/dy>0).(1)所考虑的区域由三条曲线围成.其一是双曲区域中由原点引出的特征线Г_1,它满足下面方程

Abstract

In this paper the uniqueness problem of the Cha-for y≠0)is considered.The domain D is bounded(?)by three curves showing in the figure,where T_1 and T_2are characteristics defined by the equation dx~2+Kdy~2=O,T_3 is a continuous curve.Let the coordinate of P be(Xo/yo)and the minimum and maximum abscissas ofT_3 be x_1 and x_2.When y<0,let 1+2(K/k_y)=f(y)and(?)Let in(n=0,1,2)be the least positive roots of the following equations:(?)Where δ=0 or 1 according to x_0+2Y(?) Finally,let y_1=0 if f(y)>0 for all y0≤y<0,otherwise let y1 be the upperbound of values y in the interval yo≤y<0 satisfying f(y)<0.Theorem.If y1<0 and there exists a positive numberεand an integer n(n=0,1,2)such that the following relation holds for yo≤y≤y1:(?)and if u is a quasi-regular solution which vanishes on T_2+T_3,then u=0 in D.The example for gas dynamical problem shows that this theorem is better than theresult of [1] and [2].The method of proof of the theorem is to consider the sum of the energy integral(?)dxdy=0 and the zero integral(?)(Pu~2)+

引用本文

导出引用
董光昌. 查甫雷金方程的唯一性定理(Ⅲ). 数学学报, 1959, 9(4): 365-381 https://doi.org/10.12386/A1959sxxb0034
UNIQUENESS THEOREM FOR CHAPLYGIN'S PROBLEM(Ⅲ). Acta Mathematica Sinica, Chinese Series, 1959, 9(4): 365-381 https://doi.org/10.12386/A1959sxxb0034

187

Accesses

0

Citation

Detail

段落导航
相关文章

/