关于复超曲面上具正数量曲率之Riemann度量的存在性

张伟平

数学学报 ›› 1996, Vol. 39 ›› Issue (4)

PDF(318 KB)
PDF(318 KB)
数学学报 ›› 1996, Vol. 39 ›› Issue (4) DOI: 10.12386/A1996sxxb0062
论文

关于复超曲面上具正数量曲率之Riemann度量的存在性

    张伟平
作者信息 +

The Existence of Riemann Metric with Positive Scalar Curvature over Complex Hypersurface

Author information +
文章历史 +

摘要

本文用作者的Rokhlin同余公式来计算旋复超曲面的α-不变量.将此结果与Lawson-Michelshon及Hirzebruch以前的结果相结合并应用Stolz的一定理,可以确定什么样的旋复超曲面上具有数量曲率为正的Riemann度量.

Abstract

In this paper we apply the Rokhlin type congruence of the author to computethe α-invariant of spin complex hypersurfaces. Combining with a theorem of Stolz, and Previouscalculations of Hirzebruch and Lawson-Michelsohn, our result determines whether a spin complexhypersurface of dimension not less than three would carry a Riemannian metric of the positivescalar curvature.

关键词

正数量曲率 / 复超曲面 / Rokhlin同余式

引用本文

导出引用
张伟平. 关于复超曲面上具正数量曲率之Riemann度量的存在性. 数学学报, 1996, 39(4) https://doi.org/10.12386/A1996sxxb0062
The Existence of Riemann Metric with Positive Scalar Curvature over Complex Hypersurface. Acta Mathematica Sinica, Chinese Series, 1996, 39(4) https://doi.org/10.12386/A1996sxxb0062
PDF(318 KB)

Accesses

Citation

Detail

段落导航
相关文章

/