一类双曲型方程的Huygens原理

秦惠增;商妮娜;

数学学报 ›› 2006, Vol. 49 ›› Issue (4) : 797-802.

数学学报 ›› 2006, Vol. 49 ›› Issue (4) : 797-802. DOI: 10.12386/A2006sxxb0098
论文

一类双曲型方程的Huygens原理

    秦惠增;商妮娜;
作者信息 +

Huygens'Operators on a Kind of Hyperbolic Equations

    Hui Zeng QINNi Na SHANG
Author information +
文章历史 +

摘要

通过双曲型方程的Hadamard基本解理论,将Huygens算子识别问题转化为双曲型方程的系数满足的关系,找出了更多的Huygens算子,从而推广了Stellmacher的结果,并解析了Veselov和Berest给出的一类Huygens算子与Stellmacher算子的关系.

Abstract

In this paper, using Hadamard fundamental solutions of hyperbolic equations, Huygens' operator problem is converted into a relation that the hyperbolic equation coefficients satisfy, then more Huygens operators are found, and the Stellmacher' result is generalized. Furthermore, we prove that the Huygens operators by Veselov and Berest sre similiar to the Stellmacher'operators.

关键词

Hadamard基本解 / Huygens算子 / Stellmacher算子

引用本文

导出引用
秦惠增;商妮娜;. 一类双曲型方程的Huygens原理. 数学学报, 2006, 49(4): 797-802 https://doi.org/10.12386/A2006sxxb0098
Hui Zeng QINNi Na SHANG. Huygens'Operators on a Kind of Hyperbolic Equations. Acta Mathematica Sinica, Chinese Series, 2006, 49(4): 797-802 https://doi.org/10.12386/A2006sxxb0098

260

Accesses

0

Citation

Detail

段落导航
相关文章

/