
双环图上的唯一性及其重构
Uniqueness and Reconstruction of the Double Loop Graph
本文研究带双环图上的Sturm-Liouville微分算子反问题,该算子在内部顶点处满足标准匹配条件.在求得特征值渐进式的基础上,通过子谱构成的向量函数系的完备性及其Riesz基性质重构未知势函数,并且给出解的唯一性定理和重构算法.
We provide a method for solving inverse Sturm-Liouville problem on the double loop graph. We deduce asymptotic of eigenvalues for double loop graph with the standard matching condition at the contact vertex, and then reconstruct the unknown potential by the Riesz basis constructed from the subspectrum, and finally present the uniqueness theorem and reconsbruction algorithm.
部分反问题 / Sturm-Liouville算子 / 双环图 / 标准匹配条件 / Riesz基 {{custom_keyword}} /
partial inverse spectral problem / Sturm-Liouville operator / double loop graph / standard matching condition / Rieszbasis {{custom_keyword}} /
[1] Bondarenko N. P., A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph, Analysis and Mathematical Physics, 2018, 8(1):155-168.
[2] Bondarenko N. P., An inverse problem for an integro-differential operator on a star-shaped graph, Mathematical Methods in the Applied Sciences, 2018, 41(4):1697-1702.
[3] Bondarenko N. P., Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with mixed boundary conditions, Journal of Inverse and Ill-posed Problems, 2018, 26(1):1-12.
[4] Bondarenko N. P., A 2-edge partial inverse problem for the Sturm-Liouville operators with singular potentials on a star-shaped graph, Tamkang Journal of Mathematics, 2018, 49(1):49-66.
[5] Bondarenko N. P., Yang C. F., Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with different edge lengths, Results in Mathematics, 2018, 73:No. 56, 17 pp.
[6] Freiling G., Yurko V. A., Inverse Sturm-Liouville Problems and their Applications, New York:Nova Science Publishers, 2001.
[7] He X. H., Volkmer H. Riesz bases of solutions of Sturm-Liouville equations, Journal of Fourier Analysis and Applications, 2001, 7(3):297-307.
[8] Hryniv R. O., Mykytyuk Y. V., Inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 2003, 19(3):665-684.
[9] Kuchment P., Quantum graphs:I. Some basic structures, Waves in Random Media, 2004, 14(1):107-128.
[10] Kurasov P., Inverse scattering for lasso graph, Jounal of Mathemaical Physics, 2013, 54:042103.
[11] Pivovarchik V., Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM Journal on Mathematical Analysis, 2000, 32(4):801-819.
[12] Yang C. F., Inverse spectral problems for the Sturm-Liouville operator on a d-star graph, Journal of Mathematical Analysis and Applications, 2010, 365(2):742-749.
[13] Yang C. F., Bondarenko N. P., A partial inverse problem for the Sturm-Liouville operator on the lasso-graph, Inverse Problems and Imaging, 2018, 13(1):69-79.
[14] Yang C. F., Yang X. P., Uniqueness theorems from partial information of the potential on a graph, Journal of Inverse and Ill-posed Problems, 2011, 19(4-5):631-641.
[15] Yurko V. A., Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 2005, 21(3):1075.
[16] Yurko V. A., Inverse problems for Sturm-Liouville operators on graphs with a cycle, Operators and Matrices, 2008, 2(4):543-553.
[17] Yurko V. A., Inverse nodal problems for the Sturm-Liouville differential operators on a star-type graph, Siberian Mathematical Journal, 2009, 50(2):373-378.
国家自然科学基金资助项目(11871031);江苏省自然科学基金资助项目(BK20201303)
/
〈 |
|
〉 |