次线性非对称Duffing方程的不变环面

张新丽, 朴大雄

数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 967-978.

PDF(481 KB)
PDF(481 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 967-978. DOI: 10.12386/A2021sxxb0080
论文

次线性非对称Duffing方程的不变环面

    张新丽1, 朴大雄2
作者信息 +

Invariant Tori of Sublinear Asymmetric Duffing Equations

    Xin Li ZHANG1, Da Xiong PIAO2
Author information +
文章历史 +

摘要

利用Moser扭转定理,在一定的光滑性条件下,证明了次线性非对称Duffing方程x"+ax+)1/3-bx-)1/3+φx)=pt)无穷多不变环面的存在性,从而得到拉格朗日稳定性,其中扰动项φx)有界,而强迫项pt)是周期函数.

Abstract

By using Moser's twist theorem, under some smoothness conditions, we prove the existence of infinitely many invariant tori and so the Lagrange stability for the sublinear asymmetric Duffing equations x"+a(x+)1/3-b(x-)1/3+φ(x)=p(t), where the perturbation term φ(x) is bounded, while the forced term p(t) is periodic in t.

关键词

不变环面 / 解的有界性 / 次线性非对称Duffing方程 / 扭转定理

Key words

invariant tori / boundedness of solutions / sublinear asymmetric Duffing equation / twist theorem

引用本文

导出引用
张新丽, 朴大雄. 次线性非对称Duffing方程的不变环面. 数学学报, 2021, 64(6): 967-978 https://doi.org/10.12386/A2021sxxb0080
Xin Li ZHANG, Da Xiong PIAO. Invariant Tori of Sublinear Asymmetric Duffing Equations. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 967-978 https://doi.org/10.12386/A2021sxxb0080

参考文献

[1] Alonso M. J., Ortega R., Roots of unity and unbounded motions of an asymmetric oscillator, J. Differ. Equ., 1998, 143:201-220.
[2] Dieckerhoff R., Zehnder E., Boundedness for solutions via the twist-theorem, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 1987, 14:79-95.
[3] Jiao L., Piao D. X., Wang Y. Q., Boundedness of the general semilinear Duffing equations via the twist-theorem, J. Diff. Equ., 2012, 252:91-113.
[4] Lazer A. C., McKenna P. J., Large-amplitude periodic oscillations in suspension bridge:some new connections with nonlinear analysis, SIAM Rev., 1990, 32(4):537-578.
[5] Liu B., Boundedness in asymmetric oscillations, J. Math. Anal. Appl., 1999, 231:355-373.
[6] Moser J., On invariant curves of area preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. Ⅱ, 1962, 1962:1-20.
[7] Ortega R., Asymmetric oscillators and twist mappings, J. Lond. Math. Soc., 1996, 53:325-342.
[8] Wang X. M., Aubry-Mather sets for sublinear asymmetric Duffing equations (in Chinese), Sci. Sin. Math., 2012, 42(1):13-21.
[9] Wang X. P., Invariant tori and boundedness in asymmetric oscillations, Acta. Math. Sin. Engl. Ser., 2003, 19:765-782.
[10] Wang Z. H., Wang Y. Q., Li H., Boundedness of solutions for Duffing equations with asymmetric superlinear restoring terms, Chin. Ann. Math. Ser. A, 2002, 23(2):187-196.
[11] You J. G., Boundedness for solutions of superlinear Duffing equations via the twist theorem, Sci. China Ser. A, 1992, 35(4):399-412.

基金

国家自然科学基金资助项目(11571327,11971059)

PDF(481 KB)

666

Accesses

0

Citation

Detail

段落导航
相关文章

/