Hilbert格上分数阶微分变分不等式极大解与极小解的存在性

王月虎, 张从军

数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 933-946.

PDF(627 KB)
PDF(627 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 933-946. DOI: 10.12386/A2021sxxb0077
论文

Hilbert格上分数阶微分变分不等式极大解与极小解的存在性

    王月虎1, 张从军2
作者信息 +

Existence of Maximal and Minimal Solutions to Fractional Differential Variational Inequalities on Hilbert Lattices

    Yue Hu WANG1, Cong Jun ZHANG2
Author information +
文章历史 +

摘要

本文提出一种研究分数阶微分变分不等式的半序方法.在Hilbert格上利用序不动点定理证明了分数阶微分变分不等式极大解与极小解的存在性,获得一些新结果.这些半序方法与最近有关文献中的拓扑不动点定理和离散序列逼近法具有本质不同,能够有效削弱相关函数的连续性.

Abstract

We introduce a class of order-theoretic approaches for studying the fractional differential variational inequalities. By using the order-theoretic fixed point the-orems, we prove the existence of maximal solution and minimal solution to fractional differential variational inequalities on Hilbert lattices, and obtain some new results. Our order-theoretic approaches adopted for this kind of problems are fundamentally different from the recent literatures, in which the main tools are the topological fixed point theorems and discrete approximation methods. These order-theoretic methods can effectively weaken the continuity of the involved mappings.

关键词

微分变分不等式 / 序不动点 / 极大解 / 极小解

Key words

differential variational inequalities / order-theoretic fixed point / maximal solution / minimal solution

引用本文

导出引用
王月虎, 张从军. Hilbert格上分数阶微分变分不等式极大解与极小解的存在性. 数学学报, 2021, 64(6): 933-946 https://doi.org/10.12386/A2021sxxb0077
Yue Hu WANG, Cong Jun ZHANG. Existence of Maximal and Minimal Solutions to Fractional Differential Variational Inequalities on Hilbert Lattices. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 933-946 https://doi.org/10.12386/A2021sxxb0077

参考文献

[1] Aubin J. P., Cellina A., Differential Inclusions, Springer, New York, 1984.
[2] Carl S., Heikkila S., Fixed Point Theory in Ordered Sets and Applications:From Differential and Integral Equations to Game Theory, Springer-Verlag, New York, 2010.
[3] Chen X., Wang Z., Differential variational inequality approach to dynamic games with shared constraints, Math. Program. Ser. A, 2014, 146(1):379-408.
[4] Friesz T. L., Rigdon M. A., Mookherjee R., Differential variational inequalities and shipper dynamic oligopolistic network competition, Transp. Res. Part B:Methodol., 2006, 40:480-503.
[5] Jiang Y., Wei Z., Weakly asymptotic stability for fractional delay differential mixed variational inequalities, Appl. Math. Optim., 2019. https://doi.org/10.1007/s00245-019-09645-3.
[6] Kamemskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space, Water de Gruyter, Berlin, 2001.
[7] Ke T. D., Loi N. V., Obukhovskii V., Decay solutions for a class of fractional differential variational inequalities, Fract. Calc. Appl. Anal., 2015, 18(3):531-553.
[8] Kumar S., Mild solution and fractional optimal control of semilinear system with fixed delay, J. Optim. Theory Appl., 2017, 174(1):108-121.
[9] Li J., Existence of continuous solutions of nonlinear Hammerstein integral equations proved by fixed point theorems on posets, J. Nonlinear Convex Anal., 2017, 17(7):1311-1323.
[10] Li X. S., Huang N. J., O'Regan D., Differential mixed variational inequalities in finite dimensional spaces, Nonlinear Anal., 2010, 72(9):3875-3886.
[11] Liu Z. H., Migórski S., Zeng S. D., Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differ. Equ., 2017, 263(7):3989-4006.
[12] Liu Z. H., Zeng S. D., Motreanu D., Evolutionary problems driven by variational inequalities, J. Differ. Equ., 2016, 260(9):6787-6799.
[13] Liu Z. H., Zeng S. D., Motreanu D., Partial differential hemivariational inequalities, Adv. in Nonlinear Anal., 2018, 7(4):571-586.
[14] Lu L., Liu Z. H., Motreanu D., Existence results of semilinear differential variational inequalities without compactness, Optimization, 2019, 68(5):1017-1035.
[15] Lu L., Liu Z. H., Obukhovskii V., Second order differential variational inequalities involving anti-periodic boundary value conditions, J. Math. Anal. Appl., 2019, 473(2):846-865.
[16] Migórski S., Zeng S., Mixed variational inequalities driven by fractional evolutionary equations, Acta Math. Sci. Ser. B, 2019, 39(2):461-468.
[17] Nishimura H., Ok E. A., Solvability of variational inequalities on Hilbert lattices, Math. Oper. Res., 2012, 37(4):608-625.
[18] Noor M. A., A new iterative method for monotone mixed variational inequalities, Math. Comput. Modelling, 1997, 26(7):29-34.
[19] Pang J. S., Stewart D. E., Differential variational inequalities, Math. Program. Ser. A, 2008, 113(2):345-424.
[20] Reddy B. D., Mixed variational inequalities arising in elastoplasticity, Nonlinear Anal., 1992, 19(11):1071-1089.
[21] Reddy B. D., Tomarelli F., The obstacle problem for an elastoplastic body, Appl. Math. Optim., 1990, 21(1):89-110.
[22] Wang X., Huang N. J., Differential vector variational inequalities in finite-dimensional spaces, J. Optim. Theory Appl., 2013, 158(1):109-129.
[23] Wang X., Qi Y. W., Tao C. Q., et al., A class of differential fuzzy variational inequalities in finite-dimensional spaces, Optim. Lett., 2017, 11(8):1593-1607.
[24] Wang X., Tang G. J., Li X. S., et al., Differential quasi-variational inequalities in finite dimensional spaces, Optimization, 2015, 64(4):895-907.
[25] Wang Y. H., Liu B. Q., Order-preservation properties of solution mapping for parametric equilibrium problems and their applications, J. Optim. Theory Appl., 2019, 183(3):881-901.
[26] Wang Y. H., Liu B. Q., Upper order-preservation of the solution correspondence to vector equilibrium problems, Optimization, 2019, 68(9):1769-1789.
[27] Zeng B., Liu Z. H., Existence results for impulsive feedback control systems, Nonlinear Anal. Hybrid Syst., 2019, 33:1-16.

基金

国家自然科学基金(72001101,11401296);江苏省自然科学基金(BK20171041);江苏高校哲学社会学研究项目(2017SJB0238)及江苏省高校自然科学研究面上项目(16KJB110009);江苏省青蓝工程;南京财经大学青年学者支持计划

PDF(627 KB)

564

Accesses

0

Citation

Detail

段落导航
相关文章

/