gap度量下线性时变系统的鲁棒性

徐晓萍, 石岩月

数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 881-894.

PDF(538 KB)
PDF(538 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 881-894. DOI: 10.12386/A2021sxxb0074
论文

gap度量下线性时变系统的鲁棒性

    徐晓萍, 石岩月
作者信息 +

Robustness for Linear Time-varying Systems Using the Gap Metric

    Xiao Ping XU, Yan Yue SHI
Author information +
文章历史 +

摘要

本文主要在套代数框架下研究了线性时变系统的鲁棒稳定性.当系统和控制器具有gap度量下相互独立的扰动时,应用系统图和控制器图的三角形式,给出了该类系统鲁棒稳定的充分条件.进一步地,还给出了多个系统同时鲁棒稳定的充分条件.数值结果表明结论是有效的.

Abstract

We mainly study the robust stability for linear time-varying systems within the framework of nest algebra. We consider the robust stability when the system and controller are subject to independent uncertainties measured by the gap metric, and a sufficient condition is obtained by using the trigonometric structure of the graphs about the plant and the controller. Furthermore, we also obtain some sufficient conditions for the simultaneously robust stability of several linear time-varying systems. The numerical example shows that our conclusion is effective.

关键词

稳定性 / 套代数 / 无穷维线性时变系统 / gap度量

Key words

stability / nest algebra / infinite dimensional linear time-varying systems / gap metric

引用本文

导出引用
徐晓萍, 石岩月. gap度量下线性时变系统的鲁棒性. 数学学报, 2021, 64(6): 881-894 https://doi.org/10.12386/A2021sxxb0074
Xiao Ping XU, Yan Yue SHI. Robustness for Linear Time-varying Systems Using the Gap Metric. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 881-894 https://doi.org/10.12386/A2021sxxb0074

参考文献

[1] Dale W. N., Smith M. C., Stabilizability and existence of system representations for discrete-time timevarying systems, SIAM J. Control Optim., 1993, 31(b):1538-1557.
[2] Davidson K. R., Nest Algebras, Pitman Research Notes in Mathematics Series, Vol. 191, Longman Scientific and Technical Pub. Co., UK, 1988.
[3] Djouadi S. M., On robustness in the gap metric and coprime factor uncertainty for LTV systems, Syst. Control Lett., 2015, 80:16-22.
[4] Doyle J., Francis B. A., Tannenbaum A. R., Feedback Control Theory, Macmillan Publishing Co., New York, 1990.
[5] Feintuch A., On strong stabilization for linear time-varying systems, Syst. Control Lett., 2005, 54:1091-1095.
[6] Feintuch A., Robust Control Theory in Hilbert Space, Springer, 1998.
[7] Feintuch A., Robustness for time-varying systems, Mathematics of Control, Signals and Systems, 1993, 6:247-263.
[8] Feintuch A., The gap metric for time-varying systems, Syst. Control Lett., 1991, 16:277-279.
[9] Foias C., Georgiou T. T., Smith M. C., Geometric techniques for robust stabilization of linear time-varying systems, In:Proc. of the 29th CDC, December, 1990:2868-2873.
[10] Foias C., Georgiou T. T., Smith M. C., Robust stability of feedback systems:A geometric approach using the gap metric, SIAM J. Control Optim., 1993, 31:1518-1537.
[11] Georgiou T. T., Smith M. C., Optimal robustness in the gap metric, IEEE Trans. Automat. Control, 1990, 35:673-685.
[12] Georgiou T. T., On the computation of the gap metric, Syst. Control Lett., 1988, 11:253-257.
[13] Liu L., Lu Y. F., Coprime representations and feedback stabilization of discrete time-varying linear systems, International Journal of Control, Automation and Systems, 2019, 17(2):425-434.
[14] Liu L., Lu Y. F., Necessary and sufficient conditions to the transitivity in simultaneous stabilisation of time-varying systems, IET Control Theory Appl., 2013, 7(14):1834-1842.
[15] Liu L., Lu Y. F., Transitivity in simultaneous stabilization for a family of time-varying systems, Syst. Control Lett., 2015, 78:55-62.
[16] Lu Y. F., Gong T., On stabilization for discrete linear time-varying systems, Syst. Control Lett., 2011, 60:1024-1031.
[17] Lu Y. F., Xu X. P., The stabilization problem for discrete time-varying linear systems, Syst. Control Lett., 2008, 57(11):936-939.
[18] Quadrat A., The fractional representation approach to synthesis problems:An algebraic analysis viewpoint, Part Ⅱ:Internal stabilization, SIAM J. Control Optim, 2003, 42:300-320.
[19] Qiu L., Davison E. J., Feedback stability under simultaneous gap metric uncertainties in plant and controller, Syst. Control Lett., 1992, 18:9-22.
[20] Smith M. C., On stabilization and existence of coprime factorizations, IEEE Trans. Automat. Control, 1989, 34:1005-1007.
[21] Vidyasagar M., Control System Synthesis:A Factorization Approach, MIT Press, Cambridge, 1985.
[22] Vidyasagar M., The graph metric for unstable plants and robustness estimates for feedback stability, IEEE Trans. Automat. Control, 1984, 29(5):403-418.
[23] Xu X. P., Liu L., Robust stability analysis for linear systems subjected to time-varying uncertainties within the framework of nest algebra, Science Asia, 2018, 44:46-53.
[24] Yu T. Q., Bicoprime factor stability criteria for linear time-varying systems in the nest algebra, International Journal of Control, https://doi.org/10.1080/00207179.2019.1634287, 2019.
[25] Yu T. Q., Chi W., Sufficient conditions for simultaneous stabilization of three linear systems within the framework of nest algebras, Journal of the Franklin Institute, 2014, 351:5310-5325.
[26] Yu T. Q., The transitivity in simultaneous stabilization, Syst. Control Lett., 2011, 60:1-6.
[27] Yu T. Q., Yan H., Simultaneous controller design for time-varying linear systems, Syst. Control Lett., 2011, 60:1032-1037.
[28] Zames G., El-Sakkary A. K., Unstable systems and feedback:the gap metric, In:Proc. 16th Allerton Conf., 1980, 380-385.

基金

国家自然科学基金资助项目(11701537);中央高校基本科研业务费(201964007)

PDF(538 KB)

632

Accesses

0

Citation

Detail

段落导航
相关文章

/