具有弱迷向数量曲率的Randers度量

程新跃, 龚妍廿

数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 1027-1036.

PDF(450 KB)
PDF(450 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (6) : 1027-1036. DOI: 10.12386/A2021sxxb0085
论文

具有弱迷向数量曲率的Randers度量

    程新跃1, 龚妍廿2
作者信息 +

The Randers Metrics of Weakly Isotropic Scalar Curvature

    Xin Yue CHENG1, Yan Nian GONG2
Author information +
文章历史 +

摘要

本文研究了具有弱迷向数量曲率的Randers度量.证明了具有弱迷向数量曲率的Randers度量必定具有迷向S-曲率.进一步,证明了一个共形平坦且具有弱迷向数量曲率的非黎曼Randers度量一定是Minkowski度量.

Abstract

We study the Randers metrics of weakly isotropic scalar curvature. We prove that a Randers metric of weakly isotropic scalar curvature must be of isotropic S-curvature. Further, we prove that a conformally flat Randers metric of weakly isotropic scalar curvature is either Minkowskian or Riemannian.

关键词

芬斯勒几何 / Randers度量 / Ricci曲率张量 / 数量曲率 / S-曲率

Key words

Finsler geometry / Randers metric / Ricci curvature tensor / scalar curvature / S-curvature

引用本文

导出引用
程新跃, 龚妍廿. 具有弱迷向数量曲率的Randers度量. 数学学报, 2021, 64(6): 1027-1036 https://doi.org/10.12386/A2021sxxb0085
Xin Yue CHENG, Yan Nian GONG. The Randers Metrics of Weakly Isotropic Scalar Curvature. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 1027-1036 https://doi.org/10.12386/A2021sxxb0085

参考文献

[1] Akbar-Zadeh H., Sur les espaces de Finsler á courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci., 1988, 74:281-322.
[2] Bácsó S., Cheng X. Y., Finsler conformal transformations and the curvature invariances, Publicationes Mathematicae-Debrecen, 2007, 70(1-2):221-231.
[3] Chen B., Xia K. W., On conformally flat (α, β)-metric with weaklly isotropic scalar curvature, J. Korean Math. Soc., 2019, 56(2):329-352.
[4] Chen G. Z., Cheng X. Y., An important class of conformally flat weak Einstein Finsler metrics, International Journal of Mathematics, 2013, 24(1):1350003(15 pages).
[5] Chen G. Z., He Q., Shen Z. M., On conformally flat (α, β)-metric with constant flag curvature, Publicationes Mathematicae-Debrecen, 2015, 86(3-4):387-400.
[6] Cheng X. Y., Shen Z. M., Finsler Geometry-An Approach via Randers Spaces, Heidelberg and Beijing:Springer and Science Press, 2012.
[7] Cheng X. Y., Shen Z. M., Randers metrics of scalar flag curvature, Journal of the Australian Mathematical Society, 2009, 87(3):359-370.
[8] Cheng X. Y., Yuan M. G., On Randers metrics of isotropic scalar curvature, Publicationes MathematicaeDebrecen, 2014, 84(1-2):63-74.
[9] Chern S. S., Shen Z., Riemann-Finsler Geometry, Singapore:World Scientific, 2005.
[10] Knebelman M. S., Conformal geometry of generalised metric spaces, Proc. Natl. Acad. Sci. USA, 1929, 15:376-379.
[11] Rund H., The Differiential Geometry of Finsler Spaces, Berlin:Springer-Verlag, 1959.
[12] Shen Z. M., Volume comparison and its applications in Riemann-Finsler geometry, Advances in Mathematics, 1997, 128:306-328.

基金

国家自然科学基金资助项目(11871126);重庆师范大学科学基金资助项目(17XLB022)
PDF(450 KB)

123

Accesses

0

Citation

Detail

段落导航
相关文章

/