自仿地毯上的平均测地距离

顾江文, 王松静, 赵璐铭, 奚李峰

数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 669-676.

PDF(513 KB)
PDF(513 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 669-676. DOI: 10.12386/A2021sxxb0057
论文

自仿地毯上的平均测地距离

    顾江文, 王松静, 赵璐铭, 奚李峰
作者信息 +

Average Geodesic Distance of a Self-affine Carpet

    Jiang Wen GU, Song Jing WAN, G Lu Ming ZHAO, Li Feng XI
Author information +
文章历史 +

摘要

Bedford-McMullen地毯在分形几何的研究中占有重要地位.尽管该自仿分形缺乏自相似性,我们利用有限模式技术,得到了Bedford-McMullen地毯上的平均测地距离.

Abstract

The Bedford-McMullen carpet plays an important role in fractal geometry. Although any self-affine carpet is not self-similar, we can obtain the average geodesic distance on the carpet using the technique named finite pattern.

关键词

分形 / 自仿地毯 / 测地距离

Key words

fractal / self-affine carpet / geodesic distance

引用本文

导出引用
顾江文, 王松静, 赵璐铭, 奚李峰. 自仿地毯上的平均测地距离. 数学学报, 2021, 64(4): 669-676 https://doi.org/10.12386/A2021sxxb0057
Jiang Wen GU, Song Jing WAN, G Lu Ming ZHAO, Li Feng XI. Average Geodesic Distance of a Self-affine Carpet. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 669-676 https://doi.org/10.12386/A2021sxxb0057

参考文献

[1] Bedford T., Crinkly curves, Markov partitions and box dimension in self-similar sets, Ph.D. Thesis, University of Warwick, 1984.
[2] Bonchev D., Rouvray D. H., Chemical Graph Theory:Introduction and Fundamentals, Gordon and Breach Science Publishers, New York, 1991.
[3] Dai M. F., Ye D. D., Hou J., et al., Scaling of average weighted receiving time on double-weighted Koch networks, Fractals, 2015, 23(2):1550011, 7 pp.
[4] Hino M., Geodesic distances and intrinsic distances on some fractal sets, Publ. Res. Inst. Math. Sci., 2013, 50(2):181-205.
[5] Hua B. B., Lin Y., Stochastic completeness for graphs with curvature dimension conditions, Adv. Math., 2017, 306:279-302.
[6] Huang D. W., Yu Z. G., Anh V., Multifractal analysis and topological properties of a new family of weighted Koch networks, Phys. A, 2017, 469:695-705.
[7] Kigami J., Analysis on Fractals, Cambridge Tracts in Math. 143, Cambridge Univ. Press, Cambridge, 2001.
[8] Lapidus M., Sarhad J., Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets, J. Noncommut. Geom., 2014, 8(4):947-985.
[9] Li Y. M., Xi L. F., Manhattan property of geodesic paths on self-affine carpets, Arch. Math., 2018, 111(3):279-285.
[10] McMullen C., The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J., 1984, 96:1-9.
[11] Sun Y., Dai M. F., Sun Y. Q., et al., Scaling of the average receiving time on a family of weighted hierarchical networks, Fractals, 2016, 24(3):1650038, 8 pp.
[12] Wang S. J., Yu Z. Y., Xi L. F., Average geodesic distance of Sierpinksi gasket amd Sierpinski networks, Fractals, 2017, 25(5):17500448 pp.
[13] Watts D. J., Strogatz S. H., Collective dynamics of ‘small-world’ networks, Nature, 1998, 393:440-442.
[14] Wiener H., Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 1947, 69:17-20.

基金

国家自然科学基金(11831007,11771226,11371329,11471124);教育部新世纪优秀人才支持计划;浙江省哲学社会科学规划课题(17NDJC108YB)以及宁波大学王宽诚幸福基金资助项目

PDF(513 KB)

512

Accesses

0

Citation

Detail

段落导航
相关文章

/