指数权Bergman空间Aφp和Aφ间的算子

何忠华, 王晓峰, 刘柚岐

数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 655-668.

PDF(485 KB)
PDF(485 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 655-668. DOI: 10.12386/A2021sxxb0056
论文

指数权Bergman空间Aφp和Aφ间的算子

    何忠华1, 王晓峰2, 刘柚岐2
作者信息 +

Toeplitz Operators Between Bergman Spaces with Exponential Weights Aφp and Aφ

    Zhong Hua HE1, Xiao Feng WANG2, You Qi LIU2
Author information +
文章历史 +

摘要

本文主要讨论单位圆盘上指数权Bergman空间Aφp和Aφ(0 < p < ∞)之间由正Borel测度μ所诱导的Toeplitz算子Tμ,借助Berezin变换和平均函数刻画该类算子的有界性和紧性.

Abstract

We consider Toeplitz operators Tμ with positive Borel measure symbol μ between Bergman spaces Aφp and Aφ for 0 < p < ∞, where Aφp is Bergman space on the unit disk D with exponential weights. Some characterizations of their boundedness and compactness are given in terms of Berezin transforms and averaging functions.

关键词

指数权Bergman空间 / Toeplitz算子 / Berezin变换 / 平均函数

Key words

Bergman space with exponential weights / Toeplitz operators / Berezin transform / averaging function

引用本文

导出引用
何忠华, 王晓峰, 刘柚岐. 指数权Bergman空间Aφp和Aφ间的算子. 数学学报, 2021, 64(4): 655-668 https://doi.org/10.12386/A2021sxxb0056
Zhong Hua HE, Xiao Feng WANG, You Qi LIU. Toeplitz Operators Between Bergman Spaces with Exponential Weights Aφp and Aφ. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 655-668 https://doi.org/10.12386/A2021sxxb0056

参考文献

[1] Arroussi H., Pau J., Reproducing kernel estimates, bounded projections and duality on large weighted Bergman spaces, J. Geom. Anal., 2015, 25:2284-2312.
[2] Arroussi H., Park I., Pau J., Schatten class Toeplitz operators acting on large weighted Bergman spaces, Studia Math., 2015, 229:203-221.
[3] Asserda A., Hichame A., Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential weights, C. R. Math. Acad. Sci. Paris, 2014, 352(1):13-16.
[4] Borichev A., Dhuez R., Kellay K., Sampling and interpolation in large Bergman and Fock spaces, J. Funct. Anal., 2007, 242:563-606.
[5] Carleson L., An interpolation problem for bounded analytic functions, Amer. J. Math., 1958, 80:921-930.
[6] Carleson L., Interpolation by bounded analytic functions and the corona problem, Ann. of Math., 1962, 76:547-559.
[7] Constantin O., Pelaez J. A., Boundedness of the Bergman projection on Lp spaces with exponential weights, Bull. Sci. Math., 2015, 139:245-268.
[8] Constantin O., Pelaez J. A., Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces, J. Geom. Anal., 2016, 26:1109-1154.
[9] Duren P. L., Theory of Hp Spaces, Academic Press, New York, 1970.
[10] Galanopoulos P., Pau J., Hankel operators on large weighted Bergman spaces, Ann. Acad. Sci. Fenn. Math., 2012, 37:635-648.
[11] Girela D., Peláez J. A., Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 2006, 241:334-358.
[12] Hu Z. J., Lv, X. F., Toeplitz operators on Fock spaces Fp(φ), Integr. Equ. Oper. Theory, 2014, 80:33-59.
[13] Hu Z. J., Lv X. F., Positive Toeplitz operators between different doubling Fock spaces, Taiwan. J. Math., 2017, 21(2):467-487.
[14] Hu Z. J., Lv X. F., Schuster A. P., Bergman spaces with exponential weights, J. Funct. Anal., 2019, 276(5):1402-1429.
[15] Lin P., Rochberg R., Hankel operators on the weighted Bergman spaces with exponential weights, Integr. Equ. Oper. Theory, 1995, 21:460-483.
[16] Lin P., Rochberg R., Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, Pacific J. Math., 1996, 173:127-146.
[17] Lv X. F., Carleson measures and Toeplitz operators on doubling Fock spaces, Chin. Ann. Math. Ser. B, 2019, 40(3):349-362.
[18] Oleinik V. L., Embedding theorems for weighted classes of harmonic and analytic functions, J. Sov. Math., 1978, 9:228-243.
[19] Pau J., Peláez J. Á., Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights, J. Funct. Anal., 2010, 259:2727-2756.
[20] Pau J., Peláez J. Á., Volterra type operators on Bergman spaces with exponential weights, Contemp. Math., 2012, 561:239-252.
[21] Wang X. F., Cao G. F., Xia J., Toeplitz operators on Fock-Sobolev spaces with positive measure symbols, Science China Mathematics, 2014, 57:1443-1462.
[22] Wang X. F., Cao G. F., Zhu K. H., BMO and Hankel operators on Fock-type spaces, J. Geom. Anal., 2015, 25(3):1650-1665.
[23] Wang X. F., Tu Z. H., Hu Z. J., Bounded and compact Toeplitz operators with positive measure symbol on Fock-type spaces, J. Geom. Anal., 2020, 30(4):4324-4355.
[24] Zhang Y. Y., Wang X. F., Hu Z. J., Toeplitz operators on Bergman spaces with exponential weights, Preprint.
[25] Zhu K. H., Operator Theory in Function Spaces, Mathematical Surveys and Monographs, 2nd Edn, American Mathematical Society, Providence, 2007.
[26] Zhu K. H., Analysis on Fock Spaces, Springer, New York, 2012.

基金

国家自然科学基金(11971125,11971123);广东省高校重点科研平台与科研项目(2018KZDXM048)
PDF(485 KB)

389

Accesses

0

Citation

Detail

段落导航
相关文章

/