对于一个满足“强Lefschetz条件”的Kähler SL-G-流形(X,ω),本文在弦上同调Hk(X,G)上构造了一个Hodge结构,在素弦上同调PHk(X,ω,G)上构造了一个极化Hodge结构,然后通过弦Dolbeault上同调H*,*(X,G)在H*(X,G)上得到了一个被X上所有Kähler类所极化的混合Hodge结构.所有这些(极化混合) Hodge结构都附带一个自然的G-作用.本文证明这些(极化混合) Hodge结构的G-不变部分同构于对应的整体商Kähler SL-轨形(X=[X/G],σ)的Chen-Ruan上同调群的(极化混合) Hodge结构,其中σ是由ω所诱导的X上的Kähler形式.
Abstract
In this paper, for a Kähler SL-G-manifold (X, ω) that satisfies a "Hard Lef-schetz Condition" we construct a Hodge structure on its Stringy cohomology Hk(X, G), a polarized Hodge structure on its primitive Stringy cohomology PHk(X, ω, G). By using the Stringy Dolbeault cohomology H*,*(X, G) we also get a mixed Hodge structure on H*(X, G) that is polarized by every Kähler class of X. All these (polarized mixed) Hodge structures admit natural G-actions. We show that the G-invariant parts of these (polarized mixed) Hodge structures are isomorphic to those (polarized mixed) Hodge structures of the Chen-Ruan cohomology group of (X=[X/G], σ), the global quotient Kähler SL-orbifold with σ induced by ω.
关键词
弦上同调 /
G-Hodge结构 /
极化混合G-Hodge结构
{{custom_keyword}} /
Key words
stingy cohomology /
G-Hodge structure /
polarized mixed G-Hodge structure
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Adem A., Leida J., Ruan Y. B., Orbifolds and Stringy Topology, Cambridge University Press, Cambridge, 2007.
[2] Cattani E., Fernandez J., Asymptotic Hodge theory and quantum products, Contemp. Math., 2001, 276:115-136.
[3] Cattani E., Fernandez J., Frobenius modules and Hodge asymptotics, Comm. Math. Phys., 2003, 238:489-504.
[4] Cattani E., Kaplan A., Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Invent Math., 1982, 67:101-115.
[5] Cattani E., Kaplan A., Schmid W., Degeneration of Hodge structures, Ann. Math., 1986, 123:457-535.
[6] Chen W. M., Ruan Y. B., A new cohomology theory of orbifold, Commun. Math. Phys., 2004, 248:1-31.
[7] Du C. Y., Lefschetz property of Chen-Ruan cohomology ring and dδ-Lemma, Arch. Math., 2016, 107:473-485.
[8] Fantechi B., Göttsche L., Orbifold cohomology for global quotients, Duke. Math. J., 2003, 117:197-227.
[9] Fernandez J., Hodge structures for orbifold cohomology, Proc. Amer. Math. Soc., 2006, 134:2511-2520.
[10] Filippini S. A., Ruddat H., Thompson A., An introduction to Hodge structures, Fields Inst. Monogr., 2015, 34:83-130.
[11] Jarvis T. J., Kaufmann R., Kimura T., Stringy K-theory and the Chern character, Invent Math., 2007, 168:23-81.
[12] Peters C. A. M., Steenbrink J. H. M., Mixed Hodge Structures, Springer-Verlag, Berlin, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(11501393,12071322,11626050,11871126,11801048,11901069,12071050);四川省科技计划项目(2019YJ0509);四川师范大学Laurent数学研究中心和可视化计算与虚拟现实四川省重点实验室资助项目;重庆市教委科技研究项目(KJ1600324);重庆市科委自然科学项目(cstc2018jcyjAX0465)
{{custom_fund}}