一类带权重的拟线性椭圆型方程大解的精确渐近行为

万海涛, 李希亮

数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 551-568.

PDF(579 KB)
PDF(579 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (4) : 551-568. DOI: 10.12386/A2021sxxb0048
论文

一类带权重的拟线性椭圆型方程大解的精确渐近行为

    万海涛, 李希亮
作者信息 +

The Exact Asymptotic Behavior of Large Solutions to a Class of Quasilinear Elliptic Equations with Weights

    Hai Tao WAN, Xi Liang LI
Author information +
文章历史 +

摘要

本文研究了如下拟线性椭圆型方程Δpu=bxfu),ux)> 0,x ∈ Ω大解的精确渐近行为,其中bC(Ω)是定义在Ω上非负非平凡的函数,fC[0,∞)∩C1(0,∞)是定义在[0,∞)上正的不减函数.具体而言,当Ω=RNN ≥ 3)时,我们通过区域截断技术和上下解方法研究了该方程整体大解在无穷远处的精确渐近行为.当Ω为带有C4-边界的有界区域时,我们研究了区域边界的平均曲率Hx)对边界行为的影响.因为(Δp)(p ≠ 2)是非线性算子并且Hx)是定义在∂Ω上的函数,因此该边界行为的计算和p=2时的情形完全不同.

Abstract

We study the exact asymptotic behavior of large solutions to the following equation Δpu=b(x)f(u), u(x) > 0, x ∈ Ω, where b ∈ C(Ω) is non-negative and nontrivial in Ω, fC[0, ∞) ∩ C1(0, ∞) is positive and non-decreasing on (0, ∞). When Ω=RN (N ≥ 3), by using truncation technique and the upper and lower solution methods, we establish the exact asymptotic behavior of entire large solutions to the above equation. When Ω is a C4-bounded domain, we revel the influence of the mean curvature H(x(x)) of ∂Ω to boundary behavior of large solutions. Since (Δp) (p≠2) is a non-linear operator and H(x(x)) is a variable function on ∂Ω, the calculation of the result is quite different from the one p=2.

关键词

大解 / 精确渐近行为 / Γ-变化函数

Key words

large solutions / exact asymptotic behavior / Γ-varying functions

引用本文

导出引用
万海涛, 李希亮. 一类带权重的拟线性椭圆型方程大解的精确渐近行为. 数学学报, 2021, 64(4): 551-568 https://doi.org/10.12386/A2021sxxb0048
Hai Tao WAN, Xi Liang LI. The Exact Asymptotic Behavior of Large Solutions to a Class of Quasilinear Elliptic Equations with Weights. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 551-568 https://doi.org/10.12386/A2021sxxb0048

参考文献

[1] Alarcón S., Díaz G., Rey J. M., The influence of sources terms on the boundary behavior of the large solutions of quasilinear elliptic equations, Z. Angew. Math. Phys., 2013, 64(3):659-677.
[2] Alves C. O., Santos C. A., Zhou J., Existence and non-existence of blow-up solutions for a non-autonomous problem with indefinite and gradient terms, Z. Angew. Math. Phys., 2015, 66(3):891-918.
[3] Anedda C., Porru G., Second order estimates for boundary blow-up solutions of elliptic equations, Discrete Contin. Dyn. Syst. (Suppl.), 2007, (2007):54-63.
[4] Anedda C., Porru G., Boundary behaviour for solutions of boundary blow-up problems in a borderline case, J. Math. Anal. Appl., 2009, 352(1):35-47
[5] Bandle C., Asymptotic behaviour of large solutions of quasilinear elliptic problems, Z. Angew. Math. Phys., 2003, 54(5):731-738.
[6] Bandle C., Marcus M., On second-order effects in the boundary behaviour of large solutions of semilinear elliptic problems, Differential Integral Equations, 1998, 11(1):23-34.
[7] Bandle C., Marcus M., Dependence of blowup rate of large solutions of semilinear elliptic equations, on the curvature of the boundary, Complex Var., 2004, 49(7-9):555-570.
[8] Bieberbach L., Δu=eu und die automorphen Funktionen, Math. Ann., 1916, 77(2):173-212.
[9] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Encyclopedia Math. Appl., Vol. 27, Cambridge University Press, Cambridge, 1987.
[10] Chemmam R., Dhifli A., M?agli H., Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems, Electron. J. Differential Equations, 2011, 2011(88):1-12.
[11] Cheng K., Ni W. M., On the structure of the conformal scalar curvature equation on RN, Indiana Univ. Math. J., 1992, 41(1):261-278.
[12] C?rstea F., Elliptic equations with competing rapidly varying nonlinearities and boundary blow-up, Adv. Differential Equations, 2007, 12(9):995-1030.
[13] C?rstea F., Rǎdulescu V., Blow-up boundary solutions of semilinear elliptic problems, Nonlinear Anal., 2002, 48(4):521-534.
[14] C?rstea F., Rǎdulescu V., Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C. R. Acad. Sci., Paris I, 2002, 335(5):447-452.
[15] Covei D. P., Large and entire large solution for a quasilinear problem, Nonlinear Anal., 2009, 70(4):1738-1745.
[16] Del Pino M., Letelier R., The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear Anal., 2002, 48(4):897-904.
[17] Du Y., Guo Z., Boundary blow-up solutions and their applications in quasilinear elliptic equations, J. Anal. Math., 2003, 89, 277-302.
[18] Dupaigne L., Ghergu M., Goubet O., Warnault G., Entire large solutions for semilinear elliptic equations, J. Differential Equations, 2012, 253(7):2224-2251.
[19] García-Melián J., Letelier-Albornoz R., Sabina de Lis J., Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., 2001, 129(12):3593-3602.
[20] Geluk J. L., de Hann L., Regular Variation, Extensions and Tauberian Theorems, CWI Tract/Centrum Wisk. Inform., Amsterdam, 1987.
[21] Grillot M., Grillot P., The influence of domain geometry in the boundary behavior of large solutions of degenerate elliptic problems, Port. Math. (N.S.), 2007, 64(2):143-153.
[22] Guo Z., Shang J., Remarks on uniqueness of boundary blow-up solutions, Nonlinear Anal., 2007, 66(2):484-497.
[23] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, 3rd ed., Springer-Verlag, Berlin, 1998.
[24] Huang S., Tian Q., Asymptotic behavior of large solutions to p-Laplacian of Bieberbach-Rademacher type, Nonlinear Anal., 2009, 71(11):5773-5780.
[25] Huang S., Tian, Q., Zhang S., Xi J., A second-order estimate for blow-up solutions of elliptic equations, Nonlinear Anal., 2011, 74(6):2342-2350.
[26] Keller J. B., On solutions of Δu=f(u), Comm. Pure Appl. Math., 1957, 10:503-510.
[27] Lair A. V., A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations, J. Math. Anal. Appl., 1999, 240(1):205-218.
[28] Loewner C., Nirenberg L., Partial differential equations invariant under conformal or projective transformations. in:Contributions to Analysis (A Collection of Paper Dedicated to Lipman Bers), Academic Press,New York, 1974.
[29] López-Gómez J., Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Differential Equations, 2006, 224(2):385-439.
[30] Maric V., Regular Variation and Differential Equations, Lecture Notes in Math., Vol. 1726, Springer-Verlag, Berlin, 2000.
[31] Mi L., Asymptotic boundary estimates for solutions to the p-Laplacian with infinite boundary values, Bound. Value Probl., 2019, No. 66, 27 pp.
[32] Mi L., Liu B., Second order expansion for blowup solutions of semilinear elliptic problems, Nonlinear Anal., 2012, 75(4):2591-2613.
[33] Mi L., Liu B., Boundary behavior of large solutions to elliptic equations with nonlinear gradient terms, Z. Angew. Math. Phys., 2013, 64(4):1283-1304.
[34] Mohammed A., Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations, J. Math. Anal. Appl., 2004, 298(2):621-637.
[35] Mohammed A., Boundary asymptotic and uniqueness of solutions to the p-Laplacian with infinite boundary values, J. Math. Anal. Appl., 2007, 325(1):480-489.
[36] Ni W. M., On the elliptic equation Δu + k(x)e2u=0 and conformal metrics with prescribed Gaussian curvatures, Invent. Math., 1982, 66(2):343-352.
[37] Osserman R., On the inequality Δu ≥ f(u), Pacific J. Math., 1957, 7:1641-1647.
[38] Rademacher H., Einige besondere problem partieller Differentialgleichungen, in:Die Differential und Integralgleichungen, der Mechanik und Physik I, 2nd ed., Rosenberg, New York, 1943.
[39] Resnick S. I., Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, 1987.
[40] Tao S., Zhang Z., On the existence of explosive solutions for semilinear elliptic problems, Nonlinear Anal., 2002, 48(7):1043-1050.
[41] Wan H., Asymptotic behavior of entire large solutions to semilinear elliptic equations, J. Math. Anal. Appl., 2017, 448(1):44-59.
[42] Wan H., Asymptotic behavior and uniqueness of entire large solutions to a quasilinear elliptic equation, Electron. J. Qual. Theory Differ. Equ., 2017, 2017(30):1-17.
[43] Wan H. Li X., Li B., Shi Y., Entire large solutions to semilinear elliptic equations with rapidly or regularly varying nonlinearities, Nonlinear Anal.:Real World Applications, 2019, 45:506-530.
[44] Yang H., On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in RN, Comm. Pure Appl. Anal., 2005, 4(1):197-208.
[45] Yang Z., Existence of explosive positive solutions of quasilinear elliptic equations, Appl. Math. Comput., 2006, 177(2):581-588.
[46] Ye D., Zhou F., Invariant criteria for existence of bounded positive solutions, Discrete Contin. Dyn. Syst., 2005, 12(3):413-424.
[47] Zhang Z., Boundary behavior of large solutions to semilinear elliptic equations with nonlinear gradient terms, Nonlinear Anal., 2010, 73(10):3348-3363.
[48] Zhang Z., The second expansion of large solutions for semilinear elliptic equations, Nonlinear Anal., 2011, 74(11):3445-3457.
[49] Zhang Z., Boundary behavior of large solutions to p-Laplacian elliptic equations, Nonlinear Anal.:Real World Applications, 2017, 33:40-57.
[50] Zhang Z., Ma Y., Mi L., Li X., Blow-up rates of large solutions for elliptic equations, J. Differential Equations, 2010, 249(1):180-199.

基金

国家自然科学基金资助项目(11971273)

PDF(579 KB)

453

Accesses

0

Citation

Detail

段落导航
相关文章

/