空间几何常数与集值非扩张映射的不动点

左占飞

数学学报 ›› 2021, Vol. 64 ›› Issue (2) : 281-288.

PDF(422 KB)
PDF(422 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (2) : 281-288. DOI: 10.12386/A2021sxxb0025
论文

空间几何常数与集值非扩张映射的不动点

    左占飞
作者信息 +

Some Geometric Constants and Fixed Points for Multivalued Nonexpansive Mappings

    Zhan Fei ZUO
Author information +
文章历史 +

摘要

本文利用凸刻画系数和正规结构系数,詹姆斯型常数和García-Falset系数之间的关系式,得到了空间上集值非扩张映射存在不动点的一些充分条件,这些结论不仅改进了一些文献中的结果,而且也对一些公开问题给出了解答.

Abstract

Some geometric conditions in terms of the characteristic of convexity, the normal structure coefficient, the James type constant and the García-Falset coefficient were considered in the paper, which imply the existence of fixed points for multivalued nonexpansive mappings. These fixed point theorems improve some well known results and give affirmative answers to some open questions.

关键词

凸刻画系数 / 正规结构系数 / 詹姆斯型常数 / Garí / a-Falset系数 / 不动点

Key words

characteristic of convexity / normal structure coefficient / James type constant / Garcí / a-Falset coefficient / fixed point

引用本文

导出引用
左占飞. 空间几何常数与集值非扩张映射的不动点. 数学学报, 2021, 64(2): 281-288 https://doi.org/10.12386/A2021sxxb0025
Zhan Fei ZUO. Some Geometric Constants and Fixed Points for Multivalued Nonexpansive Mappings. Acta Mathematica Sinica, Chinese Series, 2021, 64(2): 281-288 https://doi.org/10.12386/A2021sxxb0025

参考文献

[1] Bynum W., A class of spaces lacking normal structure, Compos. Math., 1972, 25:233-236.
[2] Bynum W., Normal structure coefficients for Banach spaces, J. Math. Pacific, 1980, 86(2):427-436.
[3] Clarkson J., Uniformly convex spaces, Trans. Amer. Math. Soc., 1936, 40:394-414.
[4] Clarkson J., The von Neumann-Jordan constant of Lebesgue spaces, Ann. of Math., 1937, 38:114-115.
[5] Dhompongsa S., Generalized James constant and fixed point theorems for multivalued nonexpansive mappings, Nonlinear Analysis and Convex Analysis, 2008, 1611:150-156.
[6] Dhompongsa S., Kaewcharoen A., Kaewkhao A., The Domínguez-Lorenzo condition and multivalued nonexpansive mappings, Nonlinear Anal., 2006, 64:958-970.
[7] Dinarvand M., Hölder's means and fixed Points for multivalued nonexpansive mappings, Filomat., 2018, 19:6531-6547.
[8] Dinarvand M., Banach space properties sufficient for the Domínguez-Lorenzo condition, U.P.B. Sci. Bull., Series A, 2018, 80:211-224.
[9] Domínguez Benavides T., Gavira B., Does Kirk's theorem hold for multivalued nonexpansive mappings? Fixed Point Theory and Applications, 2010, 2010, Article ID 546761, 20 pages.
[10] García-Falset J., Stability and fixed points for nonexpansive mapping, Houston J. Math., 1994, 20:495-505.
[11] Hernández Trujillo C., Lorenzo Ramírez P., Some Banach space and the (DL)-condition, J. Nonlinear Convex Anal., 2016, 17:2305-2316.
[12] Jiménez-Melado A., Llorens-Fuster E., Saejung S., The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer. Math. Soc., 2006, 134(2):355-364.
[13] Lin P., Tan K., Xu H., Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Anal., 1995, 24:929-946.
[14] Llorens-Fuster E., Mazcuñán-Navarr E. M., Reich S., The Ptolemy and Zbǎganu constants of normed spaces, Nonlinear Analysis, 2010, 72:3984-3993.
[15] Nadler Jr S., Multivalued contraction mappings, Pacific J. Math., 1969, 30:475-488.
[16] Prus S., On Bynum's fixed point theorem, Atti. Sem. Mat. Fis. Univ. Modena, 1990, 38:535-545.
[17] Takahashi Y., Some geometric constants of Banach spaces-a unified approach, In:Banach and Function Spaces II, Proc. International Symposium (ISBFS 2006) held in Kitakyushu (Sept. 14-17, 2006), Edited by Mikio Kato and Lech Maligranda, Yokohama Publ., Yokohama, 2008, 191-220.
[18] Wang Y., Some properties of James type constant and von Neumann-Jordan type constant, Dissertation Math. Master's Thesis, He'nan Normal University, Xingxiang, 2011.
[19] Zuo Z., On the Ptolemy constant of some concrete Banach spaces, Mathematical Inequalities and Applications, 2018, 21:945-956.
[20] Zuo Z., On the Ptolemy constant of Lorentz sequence spaces and their duals, ScienceAsia, 2018, 44:340-345.
[21] Zuo Z., Tang C., On James and Jordan-von Neumann type constants and the normal structure in Banach spaces, Topol. Methods Nonlinear Anal., 2017, 49:615-623.

基金

重庆市自然科学基金基础研究与前沿探索专项面上项目(cstc2019jcyj-msxmX0289)及重庆市科委基础研究与前沿探索(cstc2018jcyjAX0773);重庆三峡学院人才引进项目

PDF(422 KB)

765

Accesses

0

Citation

Detail

段落导航
相关文章

/