
涉及导数与差分的亚纯函数的小函数的收敛指数与级
The Exponents and Order of Convergence of Small Functions of Meromorphic Functions Concerning Derivatives and Differences
设f(z)是一个复平面上的亚纯函数,c是一个非零有穷复数,a(z)是f(z)的一个小函数,本文研究f(z)- a(z),f(z+c)- a(z)及Δcn f(z)- a(z)(n ∈ N+)的零点收敛指数与f(z)的级之间的关系.由此改进了涉及导数与差分的亚纯函数值分布的一些相关结果.
Let f(z) be a meromorphic function in the complex plane, let c be a nonzero finite complex number, and let a(z) be a small function with respect to f(z). It is studied that the relationship between the exponent of convergence of zeros of f(z)-a(z), f(z + c)-a(z), and Δcn f(z)-a(z) (n ∈ N+) and the order of f(z). This improves some results in value distribution of meromorphic functions concerning derivatives and differences.
亚纯函数 / 导数 / 差分 / 值分布 {{custom_keyword}} /
meromorphic functions / derivatives / differences / value distribution {{custom_keyword}} /
[1] Bergweiler W., Langley J. K., Zeros of differences of meromorphic functions, Math. Proc. Camb. Phil. Soc., 2007, 142:133-147.
[2] Chen Z. X., Fixed points of meromorphic functions and their differences, shifts, Ann. Polon. Math., 2013, 109(2):153-163.
[3] Chen Z. X., Complex Differences and Difference Equations, Mathematics Monograph Series, Vol. 29, Science Press, Beijing, 2014.
[4] Chen Z. X., Shon K. H., On zeros and fixed points of differences of meromorphic functions, J. Math. Anal. Appl., 2008, 344:373-383.
[5] Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f(z +η) and difference equations in the complex plane, Ramanujan J., 2008, 16:105-129.
[6] Chiang Y. M., Feng S. J., On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc., 2009, 361:3767-3791.
[7] Halburd R. G., Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314:477-487.
[8] Halburd R. G., Korhonen R. J., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 2006, 31:463-478.
[9] Halburd R. G., Korhonen R. J., Tohge, Kazuya Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc., 2014, 366(8):4267-4298.
[10] Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
[11] Laine I., Yang C. C., Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc., 2007, 76(3):556-566.
[12] Lan S. T., Chen Z. X., On fixed points of meromorphic functions f(z) and f(z + c), Δcf(z), Acta Math. Sci. Ser. B Engl. Ed., 2019, 39(5):1277-1289.
[13] Yang L., Value Distribution Theory, Springer-Verlag, Berlin,1993.
[14] Yang P., Liao L. W., Chen, Q. Y., Value distribution of the derivatives of entire functions with multiple zeros, Bull. Malays. Math. Sci. Soc., 2020, 43(3):2045-2063.
[15] Yi H. X., Yang C. C., Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.
[16] Zhang J., Liao L. W., Entire functions sharing some values with their difference operators, Sci. China Math., 2014, 57(10):2143-2152.
[17] Zhang R. R., Chen Z. X., Fixed points of meromorphic functions and of their differences, divided differences and shifts, Acta Math. Sin. Engl. Ser., 2016, 32(10):1189-1202.
[18] Zhang R. R., Chen Z. X., Value distribution of difference polynomials of meromorphic functions (in Chinese), Sci. Sin. Math., 2012, 42(11):1115-1130.
国家自然科学基金资助项目(11701188,11901119)
/
〈 |
|
〉 |