R1m+1中拟迷向类空超曲面

姬秀, 李同柱

数学学报 ›› 2021, Vol. 64 ›› Issue (1) : 47-58.

PDF(470 KB)
PDF(470 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (1) : 47-58. DOI: 10.12386/A2021sxxb0003
论文

R1m+1中拟迷向类空超曲面

    姬秀, 李同柱
作者信息 +

Para-isotropic Spacelike Hypersurfaces in R1m+1

    Xiu JI, Tong Zhu LI
Author information +
文章历史 +

摘要

fMm → R1m+1是无脐点类空超曲面,则在Mm上可以定义四个基本的共形不变量:共形度量g,共形1-形式C,共形第二基本形式B,共形Blaschke张量A.如果存在光滑函数λ和常数μ,使得A+μB=λg,则称Mm是拟迷向类空超曲面.本文不仅构造了拟迷向类空超曲面的例子,同时在相差R1m+1的一个共形变换下,本文还完全分类了拟迷向类空超曲面.

Abstract

Let f:Mm → R1m+1 be an umbilic-free spacelike hypersurface. Four basic conformal invariants of Mm are the conformal metric g, the conformal 1-form C, the conformal second fundamental form B, and the conformal Blaschke tensor A. Mm is called the para-isotropic spacelike hypersurface, if A + μB=λg for some constant μ and smooth function λ. We not only constructed examples which are para-isotropic spacelike hypersurfaces but also classified completely all para-isotropic spacelike hypersurfaces under the conformal transformal group of R1m+1 in this paper.

关键词

共形度量 / 共形第二基本形式 / 共形拟Blaschke张量

Key words

conformal metric / conformal second fundamental form / Conformal quasi Blaschke tensor

引用本文

导出引用
姬秀, 李同柱. R1m+1中拟迷向类空超曲面. 数学学报, 2021, 64(1): 47-58 https://doi.org/10.12386/A2021sxxb0003
Xiu JI, Tong Zhu LI. Para-isotropic Spacelike Hypersurfaces in R1m+1. Acta Mathematica Sinica, Chinese Series, 2021, 64(1): 47-58 https://doi.org/10.12386/A2021sxxb0003

参考文献

[1] Cahen M., Kerbrat Y., Domaines symmétriques des quadriques projectives, J. Math. Pure Appl., 1983, 62:327-348.
[2] Cheng Q. M., Li X. X., Qi X. R., A classification of hypersurfaces with parallel para-Blaschke tensor in Sm+1, Int. J. Math., 2010, 21:297-316.
[3] Guo Z., Fang J. B., Lin L. M., Hypersurfaces with isotropic Blaschke tensor, J. Math. Soc. Japan, 2011, 4:1155-1186.
[4] Guo Z., Li H., Wang C. P., The Möbius characterizations of Willmore tori and Veronese submanifolds in unit sphere, Pacific J. Math., 2009, 241:227-242.
[5] Fang J. B., Zhang K., Hypersurfaces with isotropic para-Blaschke tensor, Acta Math. Sinica, English Series, 2014, 30(7):1195-1209.
[6] Hu Z. J., Li H. Z., Classification of hypersurfaces with parallel Möbius second fundamental form in Sn+1, Sci. China Ser. A, 2004, 47:417-430.
[7] Ji X., Li T. Z., Sun H. F., Para-Blaschke isoparametric spacelike hypersurfaces in Lorentzian space forms, Houston Journal of Mathematics, 2019, 45(3):685-706.
[8] Li F. J., Fang J. B., Liang L., Surfaces with isotropic Blaschke tensor in S3, Acta Math. Sinica, English series, 2015, 31(5):863-878.
[9] Li H. Z., Wang C. P., Möbius geometry of hypersurfaces with constant mean curvature and scalar curvature, Manuscripta Math., 2003, 112:1-13.
[10] Li T. Z., Nie C. X., Spacelike Dupin hypersurfaces in Lorentzian space forms, Journal of the Mathematical Society of Japan, 2018, 70:463-480.
[11] Li T. Z., Nie C. X., Regular Blaschke para-umbilical hypersurfaces in the conformal space Qsn, arXiv:1512.04158, 2015[math.DG].
[12] Li X. X., Song H. R., On the regular space-like hypersurfaces in the de Sitter space R1m+1 with parallel Blaschke tensors, J. of Math., 2016, 36:1183-1200.
[13] Li X. X., Song H. R., Regular space-like hypersurfaces in R1m+1 with parallel para-Blaschke tensors, Acta Math. Sin. Engl. Ser., 2017, 33(10):1361-1381.
[14] Li X. X., Zhang F. Y., A classification of immersed hypersurfaces in spheres with parallel Blaschke tensors, Tohoku Math. J., 2006, 58:581-597.
[15] Nie C. X., Blaschke isoparametric hypersurfaces in the conformal space Q1n+1 I, Acta Math. Sinica, English Series, 2015, 31(11):1751-1758.
[16] Nie C. X., Conformal geometry of hypersurfaces and surfaces in Lorentz space forms, Doctoral dissertation, Perking University, 2006.
[17] Nie C. X., Li T. Z., He Y. J., et al., Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space, Science China Math., 2010, 53:953-965.
[18] Nie C. X., Wu C. X., Space-like hypersurfaces with parallel conformal second fundamental forms in the conformal space, Acta Math. Sinica, Chinese Series, 2008, 51(4):685-692.
[19] O'Neil B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
[20] Wang C. P., Möbius geometry of submanifolds in Sn, Manuscripta Math., 1998, 96:517-534.

基金

国家自然科学基金资助项目(11571037)

PDF(470 KB)

870

Accesses

0

Citation

Detail

段落导航
相关文章

/