基于截尾数据指数Pareto分布应力-强度模型的可靠性

程从华

数学学报 ›› 2020, Vol. 63 ›› Issue (3) : 193-208.

PDF(685 KB)
PDF(685 KB)
数学学报 ›› 2020, Vol. 63 ›› Issue (3) : 193-208. DOI: 10.12386/A2020sxxb0016
论文

基于截尾数据指数Pareto分布应力-强度模型的可靠性

    程从华
作者信息 +

Reliability of Stress-strength Model for Exponentiated Pareto Model with Censored Data

    Cong Hua CHENG
Author information +
文章历史 +

摘要

在II型双截尾删失计划下,讨论了当系统被独立的随机施加指数Pareto (EP)压力时的系统可靠性问题.作者给出了系统可靠性参数的不同点估计和区间估计,其中点估计包括一致最小方差无偏估计(UMVUE)和最大似然估计(MLE);区间估计包括精确置信区间,近似置信区间和bootstrap的区间估计.为了评价不同估计方法效果,作者提供数值模拟结果;最后提供了一个真实数据的分析结果来演示本文提出的方法.

Abstract

In this paper, the reliability of a system is discussed when the strength of the system and the stress imposed on it are independent, non identical exponentiated Pareto (EP) distributed random variables with doubly Type-II censored scheme. Different point estimations and interval estimations are proposed. The point estimators obtained are uniformly minimum variance unbiased estimators (UMVUE) and maximum likelihood estimators (MLE). The interval estimations obtained are the exact, approximate and bootstrap confidence intervals. An extensive computer simulation is used to compare the performances of the proposed estimators. One data analysis has been performed for illustrative purpose.

关键词

应力-强度模型 / EP分发 / 双重II型删失计划

Key words

stress-strength model / EP distribution / doubly Type-II censored scheme

引用本文

导出引用
程从华. 基于截尾数据指数Pareto分布应力-强度模型的可靠性. 数学学报, 2020, 63(3): 193-208 https://doi.org/10.12386/A2020sxxb0016
Cong Hua CHENG. Reliability of Stress-strength Model for Exponentiated Pareto Model with Censored Data. Acta Mathematica Sinica, Chinese Series, 2020, 63(3): 193-208 https://doi.org/10.12386/A2020sxxb0016

参考文献

[1] Aarssen K., De Haan L., On the maximal life span of humans, Mathematical Population Studies, 1994, 4:259-281.
[2] Ahmad K. E., Fakhry M. E., Jaheen Z. F., Empirical Bayes estimation of P (Y < X) and characterizations of the Burr-type X model, Journal of Statistical Planning and Inference, 1997, 64:297-308.
[3] Al-Mutairi D. K., Ghitany M. E., Kundu D., Inferences on stress-strength reliability from Lindley distributions, Comm Statist Theory Methods, 2013, 42:1443-1463.
[4] Afify W. M., On estimation of the exponentiated pareto distribution under different sample scheme, Applied Mathematical Sciences, 2010, 4:393-402.
[5] Arnold B. C., Balakrishnan N., Nagaraja H. N., A First Course in Order Statistics, Classics in Applied Mathematics, SIAM, Philadelphia, PA, 2008.
[6] Balakrishnan N., Chan P. S., Maximum likelihood estimation for the three-parameter log-gamma distribution under Type-II censoring, in Advances in Reliability, N. Balakrishnan, ed., CRC Press, Boca Raton, FL, 1995.
[7] Basirat M., Baratpour S., Ahmadi J., Statistical inferences for stress-strength in the proportional hazard models based on progressive Type-II censored samples, Journal of Statistical Computation and Simulation, 2015, 85(3):431-449.
[8] Borovkov A. A., Mathematical Statistics, Gordon and Breach Science Publishers, Amsterdam, 1998.
[9] Daragahi-Noubary G. R., On tail estimation:an improved method, Mathematical Geology, 1989, 21:829-842.
[10] Downtown F., The estimation of P (X > Y) in the normal case, Technometrics, 1973, 15:551-558.
[11] kklhEfron B., Bootstrap methods:Another look at the jackknife, Ann. Stat., 1979, 7:1-26.
[12] Efron B., Tibshirani R. J., Introduction to the Bootstrap, Chapman & Hall, New York, 1993.
[13] Gupta R. C., Gupta R. D., Gupta P. L., Modeling failure time data by Lehman alternatives, Communications in Statistics-Theory and Methods, 1998, 27(4):887-904.
[14] Ghitany M. E., Atieh B., Nadarajah S., Lindley distribution and its application, Math Comput Simul., 2008, 78:493-506.
[15] Kotz S., Lumelskii Y., Pensky M., The Stress-Strength Model and its Generalizations, Theory and Applications, World Scientific Publishing Co., 2003.
[16] Kundu D., Raqab M. Z., Estimation of R=P (Y < X) for Three-Parameter Weibull Distribution, Statistics and Probability Letters, 2009, 79:1839-1846.
[17] Lehmann E. L., Casella G., Theory of Point Estimation, 2nd ed, Springer-Verlag, New York, 2009.
[18] Owen D. B., Craswell K. J., Hanson D. L., Nonparametric Upper Confidence Bounds for P (Y < X) and Confidence Limits for P (Y < X) When X and Y are Normal, Journal of the American Statistical Association, 1977, 59:906-924.
[19] Pickands J., Statistical inference using extreme order statistics, Annals of Statistics, 1975, 3:119-131.
[20] Pan G. M., Wang X. P., Zhou W., Nonparametric statistical inference for P (X < Y < Z), the Indian Journal of Statistics, 2013, 75A(1):118-138.
[21] Raqab M. Z., Madi M. T., Kundu D., Estimation of P (Y < X) for the 3-Parameter generalized exponential distribution, Communications in Statistics-Thoery and Methods, 2008, 37(18):2854-2864.
[22] Raqab M. Z., On the maximum likelihood prediction of the exponential distribution based on doubly Type II censored samples, Pakistan J. Stat., 1995, 11:1-10.
[23] Sarhan A. E., Estimation of the mean and standard deviation by order statistics, Part III, Ann. Math. Stat., 1995, 26:576-592.
[24] Shawky A. I., Abu-Zinadah, Hanna H., Exponentiated pareto distribution:Diifferent method of estimations, Int. J. Contemp. Math. Sciences, 2009, 4:677-693.
[25] Singh S. K., Singh U., Kumar M., et al., Estimation of Parameters of Exponentiated Pareto Distribution for Progressive Type-II Censored Data with Binomial Random Removals Scheme, Electronic Journal of Applied Statistical Analysis, 2013, 6:130-148.
[26] Surles J. G., Padgett W. J., Inference for reliability and stress-strength for a scaled Burr Type X distribution, Lifetime Data Analysis, 2001, 7:187-200.
[27] Tong H., On the estimation of P (Y < X) for exponential families, IEEE Trans, Reliabil, 1977, 26:54-56.
[28] van Montfort M. A. J., Witter J. V., Testing exponentiality against generalized Pareto distribution, Journal of Hydrology, 1985, 78:305-315.
[29] Wu S. F., Interval estimation for the two-parameter exponential distribution based on the doubly type II censored sample, Qual. Quantity, 2007, 41:489-496.
[30] Wasserman L., All of Statistics:A Concise Course in Statistical Inference, Springer, New York, 2003.
[31] Zelterman D., A statistical distribution with an unbounded hazard function and its application to a theory from demography, Biometrics, 1992, 48:807-818.

基金

广东省自然科学基金(2018A030313829),广东省普通高校特色创新类项目(2019KTSCX202),广东省高等教育教学研究和改革项目(2019625);肇庆教育发展研究院项目(ZQJYY2019033)和肇庆学院青年项目(201930)}

PDF(685 KB)

Accesses

Citation

Detail

段落导航
相关文章

/