双单子分配律的R-矩阵

郭双建, 张晓辉

数学学报 ›› 2019, Vol. 62 ›› Issue (6) : 853-864.

PDF(476 KB)
PDF(476 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (6) : 853-864. DOI: 10.12386/A2019sxxb0077
论文

双单子分配律的R-矩阵

    郭双建1, 张晓辉2
作者信息 +

The R-Matrix of Bimonad Distributive Law

    Shuang Jian GUO1, Xiao Hui ZHANG2
Author information +
文章历史 +

摘要

本文讨论了双单子分配律的表示及其R-矩阵结构.设FG是给定的双单子,刻画了单子双模范畴,并给出了其为辫子范畴的充要条件,由此构造了量子Yang-Baxter方程的一组新解系.

Abstract

The aim of this paper is to define and study the R-matrix of a bimonad distributive law. Assume that F and G are bimonads, we give necessary and sufficient conditions for C(F,G)(φ), the category of F, G-bimodules, to be a braided monoidal category.

关键词

双单子 / 单子分配律 / 辫子张量范畴

Key words

Bimonad / Monad distributive law / Braided monoidal category

引用本文

导出引用
郭双建, 张晓辉. 双单子分配律的R-矩阵. 数学学报, 2019, 62(6): 853-864 https://doi.org/10.12386/A2019sxxb0077
Shuang Jian GUO, Xiao Hui ZHANG. The R-Matrix of Bimonad Distributive Law. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 853-864 https://doi.org/10.12386/A2019sxxb0077

参考文献

[1] Beck J., Distributive Laws, Seminar on Triples and Categorical Homology Theory, Springer, Berlin, 1969:119-140.
[2] Benton N., Walder P., Linear Logic, Monads and Lambda Calculus, In:Proceedings of the 11th IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 1996.
[3] Blackwell R., Kelly M., Power J., Two-dimensional monad theory, Journal of Pure and Applied Algebra, 1989, 59(1):1-41.
[4] Böhm G, Brzeziński T., Wisbauer R., Monads and comands on module categories, Journal of Algebra, 2009, 322:1719-1747.
[5] Bruguières A., Lack S., Virelizier A., Hopf monads on monoidal categories, Advances in Mathematics, 2011, 227(2):745-800.
[6] Bruguières A., Virelizier A., Categorical centers and Reshetikhin-Turaev invariants, Acta Mathematica Vietnamica, 2008, 33(3):255-277.
[7] Bruguières A., Virelizier A., Hopf monads, Advances in Mathematics, 2007, 215(2):679-733.
[8] Bruguières A., Virelizier A., On the center of fusion categories, Pacific Journal of Mathematics, 2013, 264(1):1-30.
[9] Bruguières A., Virelizier A., Quantum double of Hopf monads and categorical centers, Transactions of the American Mathematical Society, 2012, 364(3):1225-1279.
[10] Guo S. J., Zhang X. H., Guo S. J., et al., Smash product of bimonads (in Chinese), J. Jilin Univ. Sci., 2015, 53(5):1-7.
[11] Mac Lane S., Homologie des Anneaux et des Modules, Colloque de Topologie Algebrique, Louvain, 1956.
[12] Mesablishvili B., Wisbauer R., The Fundamental Theorem for weak braided bimonads, Journal of Algebra, 2017, 490:55-103.
[13] Moerdijk I., Monads on tensor categories, Journal of Pure and Applied Algebra, 2002, 168(2-3):189-208.
[14] Sabry A., Wadler P., A reflection on call-by-value, ACM Transactions on Programming Languages and Systems, 1997, 19(6):916-941.
[15] Street R., The formal theory of monads, Journal of Pure and Applied Algebra, 1972, 2(2):149-168.
[16] Wisbauer R., Algebras versus coalgebras, Applied Categorical Structures, 2008, 16(1-2):255-295.

基金

国家自然科学基金资助项目(11761017,11801304);中国博士后基金资助项目(2018M630768)

PDF(476 KB)

394

Accesses

0

Citation

Detail

段落导航
相关文章

/