
黎曼ζ-函数之一:KS变换——献给杨乐先生八十华诞
On the Riemann Zeta Function, I: KS-transform
我们定义了KS-变换和自然数乘法结构相关的Fourier变换,建立了实数乘法半群[1,∞)={x:x∈R,x ≥ 1}和复半平面Ω={s=σ+it:σ,t∈R,σ ≥ 1/2}之间的由KS-变换诱导的对偶关系,证明了KS-变换是希尔伯特空间L2([1,∞))和哈代空间H2(Ω)之间的等距算子,而且该算子保持了相关的函数空间之间由实数的乘法卷积和复数点点相乘诱导出的代数结构的同构.作为应用,我们给出了黎曼假设成立的有关算子指标的等价命题,从而算子理论为研究黎曼ζ-函数和自然数的乘法结构提供了新思路.
Kadison-Singer transform (KS-transform) is introduced as a multiplicative Fourier transform associated with the multiplicative structure of natural numbers. It is a unitary operator between the Hilbert space L2([1,∞)) and Hardy space H2(Ω), where Ω is a the right half complex plane with the real part great than or equal to 1/2. We also show that KS-transform maps the multiplicative convolution of two functions on[1,∞) to the usual product of functions on Ω. Riemann hypothesis is equivalent to the vanishing index of certain convolution operators.
Fourier变换 / KS-变换 / L-函数 / 乘法卷积 {{custom_keyword}} /
Fourier transform / KS-transform / L-functions / multiplicative convolution {{custom_keyword}} /
[1] Atiyah M., Singer I. M., The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc., 1963, 69:422-433.
[2] 葛力明, 数与形—一个说不尽的话题, 数学所讲座2010, 科学出版社, 2012:1-7
[3] 葛力明, 薛博卿, 黎曼ζ-函数的零点都有1/2+ it的形式吗? 科学通报, 2018:141-147
[4] Hadamard J., Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques, Bull. Soc. Math. France, 1896, 24:199-220.
[5] Kadison R., Ringrose J., Fundamentals of the Operator Algebras, vols. I and Ⅱ, Academic Press, Orlando, 1983 and 1986.
[6] Li X., The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory, 1997, 65:325-333.
[7] Von Mangoldt H., Zu Riemanns Abhandlung Über die Anzahl der Primzahlen unter einer gegebenen Grösse, J. Reine Angew Math., 1895, 114:255-305.
[8] Riemann B., Über die Anzahl der Primzahlen unter Einer Gegebenen Grösse, Monatsber, Berlin Akad, 1859:671-680.
[9] Rudin W., Real and Complex Analysis (3rd ed), McGraw-Hill, New York, 1987.
[10] Vallée-Poussin C. J., Recherches analytiques de la théorie des nombres premiers, Annales de la Societe Scientifique de Bruxelles, 1896, 20:183-256, 281-352, 363-397; 1896, 21:351-368.
/
〈 |
|
〉 |